Skip to main content

Monotone k-Submodular Knapsack Maximization: An Analysis of the Greedy+Singleton Algorithm

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2022)

Abstract

This paper studies the problem of maximizing a non-negative monotone k-submodular function. A k-submodular function is a generalization of a submodular function, where the input consists of k disjoint subsets, instead of a single subset. For the problem under a knapsack constraint, we consider the algorithm that returns the better solution between the single element of highest value and the result of the fully greedy algorithm, to which we refer as Greedy+Singleton, and prove an approximation ratio \(\frac{1}{4}(1-\frac{1}{e})\approx 0.158\). Though this ratio is strictly smaller than the best known factor for this problem, Greedy+Singleton is simple, fast, and of special interests. Our experiments demonstrates that the algorithm performs well in terms of the solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen, R., Katzir, L.: The generalized maximum coverage problem. Inf. Process. Lett. 108(1), 15–22 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ene, A., Nguyen, H.L.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. In: Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP) (2019)

    Google Scholar 

  3. Feldman, M., Nutov, Z., Shoham, E.: Practical budgeted submodular maximization. arXiv preprint arXiv:2007.04937 (2020)

  4. Gridchyn, I., Kolmogorov, V.: Potts model, parametric maxflow and \(k\)-submodular functions. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327 (2013)

    Google Scholar 

  5. Hirai, H., Iwamasa, Y.: On \(k\)-submodular relaxation. SIAM J. Discret. Math. 30(3), 1726–1736 (2016)

    Article  MathSciNet  Google Scholar 

  6. Huang, C.C., Kakimura, N.: Improved streaming algorithms for maximizing monotone submodular functions under a knapsack constraint. Algorithmica 83(3), 879–902 (2021)

    Article  MathSciNet  Google Scholar 

  7. Huang, C.C., Kakimura, N., Yoshida, Y.: Streaming algorithms for maximizing monotone submodular functions under a Knapsack constraint. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM) (2017)

    Google Scholar 

  8. Huber, A., Kolmogorov, V.: Towards minimizing k-submodular functions. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp. 451–462. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32147-4_40

    Chapter  Google Scholar 

  9. Iwata, S., Tanigawa, S.I., Yoshida, Y.: Improved approximation algorithms for \(k\)-submodular function maximization. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 404–413 (2016)

    Google Scholar 

  10. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)

    Article  MathSciNet  Google Scholar 

  11. Kulik, A., Schwartz, R., Shachnai, H.: A refined analysis of submodular greedy. Oper. Res. Lett. 49(4), 507–514 (2021)

    Article  MathSciNet  Google Scholar 

  12. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 912–920 (2010)

    Google Scholar 

  13. Nguyen, L., Thai, M.T.: Streaming \(k\)-submodular maximization under noise subject to size constraint. In: Proceedings of the 37th International Conference on Machine Learning (ICML), pp. 7338–7347. PMLR (2020)

    Google Scholar 

  14. Ohsaka, N., Yoshida, Y.: Monotone \(k\)-submodular function maximization with size constraints. In: Proceedings of the 28th International Conference on Neural Information Processing Systems (NeurIPS), vol. 1, pp. 694–702 (2015)

    Google Scholar 

  15. Oshima, H.: Improved randomized algorithm for \(k\)-submodular function maximization. SIAM J. Discret. Math. 35(1), 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  16. Sakaue, S.: On maximizing a monotone \(k\)-submodular function subject to a matroid constraint. Discret. Optim. 23, 105–113 (2017)

    Article  MathSciNet  Google Scholar 

  17. Soma, T.: No-regret algorithms for online \( k \)-submodular maximization. In: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1205–1214. PMLR (2019)

    Google Scholar 

  18. Sviridenko, M.: A note on maximizing a submodular set function subject to a Knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  19. Tang, J., Tang, X., Lim, A., Han, K., Li, C., Yuan, J.: Revisiting modified greedy algorithm for monotone submodular maximization with a Knapsack constraint. Proc. ACM Measure. Anal. Comput. Syst. 5(1), 1–22 (2021)

    Article  Google Scholar 

  20. Tang, Z., Wang, C., Chan, H.: On maximizing a monotone k-submodular function under a knapsack constraint. Oper. Res. Lett. 50(1), 28–31 (2022)

    Article  MathSciNet  Google Scholar 

  21. Wang, B., Zhou, H.: Multilinear extension of \( k \)-submodular functions. arXiv preprint arXiv:2107.07103 (2021)

  22. Ward, J., Živnỳ, S.: Maximizing \(k\)-submodular functions and beyond. ACM Trans. Algorithms 12(4), 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yaroslavtsev, G., Zhou, S., Avdiukhin, D.: “Bring your own greedy”+ max: near-optimal 1/2-approximations for submodular knapsack. In: International Conference on Artificial Intelligence and Statistics, pp. 3263–3274. PMLR (2020)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by Artificial Intelligence and Data Science Research Hub, BNU-HKBU United International College (UIC), No. 2020KSYS007, and by a grant from UIC (No. UICR0400025-21). Zhongzheng Tang is supported by National Natural Science Foundation of China under Grant No. 12101069 and Innovation Foundation of BUPT for Youth (No. 500422309). Chenhao Wang is supported by a grant from UIC (No. UICR0700036-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenhao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Tang, Z., Wang, C. (2022). Monotone k-Submodular Knapsack Maximization: An Analysis of the Greedy+Singleton Algorithm. In: Ni, Q., Wu, W. (eds) Algorithmic Aspects in Information and Management. AAIM 2022. Lecture Notes in Computer Science, vol 13513. Springer, Cham. https://doi.org/10.1007/978-3-031-16081-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16081-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16080-6

  • Online ISBN: 978-3-031-16081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics