Skip to main content

Melt Pool Acquisition Using Near-Infrared Camera in Aluminum Wire Arc Additive Manufacturing

  • Conference paper
  • First Online:
Advances on Mechanics, Design Engineering and Manufacturing IV (JCM 2022)

Abstract

In order to produce functional parts in Wire Arc Additive Manufacturing (WAAM), mastering parts quality is a key challenge. The literature highlights the connection between thermal conditions and part defects. Thus, monitoring a thermal parameter, for instance the melt pool in this study, is a crucial indicator to describe parts quality. The paper aims to investigate the feasibility of CMOS camera (Complementary Metal–Oxide–Semiconductor) to track a homothety of the melt pool for parts manufactured by WAAM. In this field, the literature still lacks information concerning this sensor operating in industrial condition, especially for aluminum alloys. An experiment and a numerical method are developed to estimate its sensitivity and robustness. Validation criteria for the method are presented and confirm its interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, B., et al.: A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J. Manuf. Process. 35, 127–139 (2018). https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  2. Fronius: RCU 500i Operating instructions (2022). https://www.fronius.com/~/downloads/Perfect%20Welding/Operating%20Instructions/42,0426,0021,EN.pdf

  3. Marinelli, G., Martina, F., Ganguly, S., Williams, S.: Development of wire + arc additive manufacturing for the production of large-scale unalloyed tungsten components. Int. J. Refract. Metals Hard Mater. 82, 329–335 (2019). https://doi.org/10.1016/j.ijrmhm.2019.05.009

    Article  Google Scholar 

  4. Béraud, N., Chergui, A., Limousin, M., Villeneuve, F., Vignat, F.: An indicator of porosity through simulation of melt pool volume in aluminum wire arc additive manufacturing. Mech. Ind. 23, 1 (2022). https://doi.org/10.1051/meca/2021052

    Article  Google Scholar 

  5. Ding, D., Pan, Z., Cuiuri, D., Li, H.: Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The Int. J. Adv. Manuf. Technol. 81(1–4), 465–481 (2015). https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  6. Chergui, M.A.: Simulation based deposition strategies evaluation and optimization in wire arc additive manufacturing (2021). https://tel.archives-ouvertes.fr/tel-03273221

  7. Manokruang, S., Vignat, F., Museau, M., Limousin, M.: Process parameters effect on weld beads geometry deposited by wire and arc additive manufacturing (WAAM). In: Roucoules, L., Paredes, M., Eynard, B., Morer Camo, P., Rizzi, C. (eds.) JCM 2020. LNME, pp. 9–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70566-4_3

    Chapter  Google Scholar 

  8. Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T.: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016). https://doi.org/10.1016/j.matdes.2016.01.099

    Article  Google Scholar 

  9. Monier, R., Thumerel, F., Chapuis, J., Soulié, F., Bordreuil, C.: Liquid metals surface temperature fields measurements with a two-colour pyrometer. Measurement 101, 72–80 (2017). https://doi.org/10.1016/j.measurement.2016.12.031

    Article  Google Scholar 

  10. Halisch, C., Radel, T., Tyralla, D., Seefeld, T.: Measuring the melt pool size in a wire arc additive manufacturing process using a high dynamic range two-colored pyrometric camera. Weld. World 64(8), 1349–1356 (2020). https://doi.org/10.1007/s40194-020-00892-5

    Article  Google Scholar 

  11. Chen, M., Zhang, D., Wu, C.: Current waveform effects on CMT welding of mild steel. J. Mater. Process. Technol. 243, 395–404 (2017). https://doi.org/10.1016/j.jmatprotec.2017.01.004

    Article  Google Scholar 

  12. García, A., et al.: Online cracking detection by means of optical techniques in laser-cladding process. Struct. Control Health Monit. 26(3), e2291 (2019). https://doi.org/10.1002/stc.2291

    Article  Google Scholar 

  13. Xiong, J., Lei, Y., Chen, H., Zhang, G.: Fabrication of inclined thin-walled parts in multi-layer single-pass GMAW-based additive manufacturing with flat position deposition. J. Mater. Process. Technol. 240, 397–403 (2017). https://doi.org/10.1016/j.jmatprotec.2016.10.019

    Article  Google Scholar 

  14. Rouquette, S., Cambon, C., Bendaoud, I., Soulié, F.: Estimation of the heat source parameters during the deposition of SS316L wire with GMAW-CMT process: application to additive manufacturing; 28th Congress of French Thermal Society (2020). https://doi.org/10.25855/SFT2020-128

  15. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  16. Frigge, M., Hoaglin, D.C., Iglewicz, B.: Some implementations of the boxplot. The Am. Stat. 43(1), 50 (1989). https://doi.org/10.2307/2685173

    Article  Google Scholar 

  17. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  18. Xia, C., Pan, Z., Zhang, S., Li, H., Xu, Y., Chen, S.: Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing. The Int. J. Adv. Manuf. Technol. 110(7–8), 2131–2142 (2020). https://doi.org/10.1007/s00170-020-05998-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Dellarre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dellarre, A., Limousin, M., Beraud, N. (2023). Melt Pool Acquisition Using Near-Infrared Camera in Aluminum Wire Arc Additive Manufacturing. In: Gerbino, S., Lanzotti, A., Martorelli, M., Mirálbes Buil, R., Rizzi, C., Roucoules, L. (eds) Advances on Mechanics, Design Engineering and Manufacturing IV. JCM 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-15928-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15928-2_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15927-5

  • Online ISBN: 978-3-031-15928-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics