Skip to main content

A Novel Two-Hand-Inspired Hybrid Robotic End-Effector Fabricated Using 3D Printing

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2022)

Abstract

The field of soft robotics aims to improve on limitations of traditional rigid robots by using naturally compliant materials. This work designed a novel robotic end-effector, inspired by two-handed human grasping and fabricated using 3D printing, that is capable of lifting target objects without exerting large forces. The end-effector is a hybrid of rigid and soft materials, and aims to be simple, low-cost, and fabricated using a reliable process. Grasp tests were performed on a wide range of target objects and the success of the design is evaluated in terms of grasping capability and fabrication process. Results show the capability of the novel design to lift a range of target objects, and highlight improved grasping performance over other types of gripper. Material costs and fabrication/assembly time of the 3D printed components are also presented.

Supported by The University of York.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett, N.W., et al.: A 3D-printed, functionally graded soft robot powered by combustion. Science 349(6244), 161–165 (2015). https://doi.org/10.1126/science.aab0129

    Article  Google Scholar 

  2. Billard, A., Kragic, D.: Trends and challenges in robot manipulation. Science 364(6446) (2019). https://doi.org/10.1126/science.aat8414

  3. Calisti, M., Giorelli, M., Levy, G., Mazzolai, B., Hochner, B., Laschi, C., Dario, P.: An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomimet. 6(3), 036002 (2011). https://doi.org/10.1088/1748-3182/6/3/036002

    Article  Google Scholar 

  4. Carrozza, M.C., et al.: A cosmetic prosthetic hand with tendon driven under-actuated mechanism and compliant joints: ongoing research and preliminary results. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2661–2666. IEEE (2005). https://doi.org/10.1109/ROBOT.2005.1570515

  5. Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1–3), 161–185 (2016). https://doi.org/10.1177/0278364915592961

    Article  Google Scholar 

  6. Dollar, A.M., Howe, R.D.: A robust compliant grasper via shape deposition manufacturing. IEEE/ASME Trans. Mechatron. 11(2), 154–161 (2006). https://doi.org/10.1109/TMECH.2006.871090

    Article  Google Scholar 

  7. Elgeneidy, K., Liu, P., Pearson, S., Lohse, N., Neumann, G., et al.: Printable soft grippers with integrated bend sensing for handling of crops. In: 19th Annual Conference Towards Autonomous Robotic Systems, vol. 10965, pp. 479–480 (2018). https://doi.org/10.1007/978-3-319-96728-8

  8. Finio, B., Shepherd, R., Lipson, H.: Air-powered soft robots for k-12 classrooms. In: 2013 IEEE Integrated STEM Education Conference (ISEC), pp. 1–6. IEEE (2013). https://doi.org/10.1109/ISECon.2013.6525198

  9. Firouzeh, A., Paik, J.: An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes. Smart Mater. Struct. 26(5), 055035 (2017). https://doi.org/10.1088/1361-665X/aa67fd

    Article  Google Scholar 

  10. Glick, P.E., Van Crey, N., Tolley, M.T., Ruffatto, D.: Robust capture of unknown objects with a highly under-actuated gripper. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3996–4002. IEEE (2020). https://doi.org/10.1109/ICRA40945.2020.9197100

  11. Hannan, M.W., Walker, I.D.: Analysis and experiments with an elephant’s trunk robot. Adv. Robot. 15(8), 847–858 (2001). https://doi.org/10.1163/156855301317198160

    Article  Google Scholar 

  12. Hao, Y., et al.: Universal soft pneumatic robotic gripper with variable effective length. In: 2016 35th Chinese Control Conference (CCC), pp. 6109–6114. IEEE (2016). https://doi.org/10.1109/ChiCC.2016.7554316

  13. Hassan, T., Manti, M., Passetti, G., d’Elia, N., Cianchetti, M., Laschi, C.: Design and development of a bio-inspired, under-actuated soft gripper. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3619–3622. IEEE (2015). https://doi.org/10.1109/EMBC.2015.7319176

  14. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011). https://doi.org/10.1002/ange.201006464

    Article  Google Scholar 

  15. In, H., Jeong, U., Lee, H., Cho, K.J.: A novel slack-enabling tendon drive that improves efficiency, size, and safety in soft wearable robots. IEEE/ASME Trans. Mechatron. 22(1), 59–70 (2016). https://doi.org/10.1109/TMECH.2016.2606574

    Article  Google Scholar 

  16. In, H., Kang, B.B., Sin, M., Cho, K.J.: Exo-glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robot. Autom. Mag. 22(1), 97–105 (2015). https://doi.org/10.1109/MRA.2014.2362863

    Article  Google Scholar 

  17. Jeong, U., Kim, K., Kim, S.H., Choi, H., Youn, B.D., Cho, K.J.: Reliability analysis of a tendon-driven actuation for soft robots. Int. J. Robot. Res. 40(1), 494–511 (2021). https://doi.org/10.1177/0278364920907151

    Article  Google Scholar 

  18. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013). https://doi.org/10.1016/j.tibtech.2013.03.002

    Article  Google Scholar 

  19. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv. Robot. 26(7), 709–727 (2012). https://doi.org/10.1163/156855312X626343

    Article  Google Scholar 

  20. Lipson, H.: Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Rob. 1(1), 21–27 (2014). https://doi.org/10.1089/soro.2013.0007

    Article  Google Scholar 

  21. McKenzie, R.M., Barraclough, T.W., Stokes, A.A.: Integrating soft robotics with the robot operating system: a hybrid pick and place arm. Front. Robot. AI 4, 39 (2017). https://doi.org/10.3389/frobt.2017.00039, https://www.frontiersin.org/article/10.3389/frobt.2017.00039

  22. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015). https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  23. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., Gross, M.: Microstructures to control elasticity in 3D printing. ACM Trans. Graph. (TOG) 34(4), 1–13 (2015). https://doi.org/10.1145/2766926

    Article  Google Scholar 

  24. Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008). https://doi.org/10.1080/11762320802557865

    Article  Google Scholar 

  25. Vamsi, P.B., Rao, V.R.: Design and fabrication of soft gripper using 3D printer. In: IOP Conference Series: Materials Science and Engineering, vol. 402, p. 012026. IOP Publishing (2018). https://doi.org/10.1088/1757-899X/402/1/012026

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marsh, B., Liu, P. (2022). A Novel Two-Hand-Inspired Hybrid Robotic End-Effector Fabricated Using 3D Printing. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15908-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15907-7

  • Online ISBN: 978-3-031-15908-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics