Skip to main content

Edge AI: Leveraging the Full Potential of Deep Learning

  • Chapter
  • First Online:
Recent Innovations in Artificial Intelligence and Smart Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1061))

Abstract

The rapid emergence of deep learning (DL) algorithms has paved the way for bringing artificial intelligence (AI) services to end users. The intersection between edge computing and AI has brought an exciting area of research called edge artificial intelligence (Edge AI). Edge AI has enabled a paradigm shift in many application areas such as precision medicine, wearable sensors, intelligent robotics, industry, and agriculture. The training and inference of DL algorithms are migrating from the cloud to the edge. Computationally expensive, memory and power-hungry DL algorithms are optimized to leverage the full potential of Edge AI. Embedding intelligence on the edge devices such as the internet of things (IoT), smartphones, and cyber-physical systems (CPS) can ensure user privacy and data security. Edge AI eliminates the need for cloud transmission through processing near the source of data and significantly reduces the latency; enabling real-time, learned, and automatic decision-making. However, the computing resources at the edge suffer from power and memory constraints. Various compression and optimization techniques have been developed in both the algorithm and the hardware to overcome the resource constraints of edge. In addition, algorithm-hardware codesign has emerged as a crucial element to realize the efficient Edge AI. This chapter focuses on each component of integrating DL into Edge AI such as model compression, algorithm hardware codesign, available edge hardware platforms, and challenges and future opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Xu et al., Edge intelligence: empowering intelligence to the edge of network. Proc. IEEE 109(11), 1778–1837 (2021). https://doi.org/10.1109/JPROC.2021.3119950

    Article  Google Scholar 

  2. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  3. V. Sze, Y.-H. Chen, T.-J. Yang, J.S. Emer, Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://doi.org/10.1109/JPROC.2017.2761740

    Article  Google Scholar 

  4. M.M. Hossain Shuvo, O. Hassan, D. Parvin, M. Chen, S.K. Islam, An optimized hardware implementation of deep learning inference for diabetes prediction, in 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 2021, pp. 1–6. https://doi.org/10.1109/I2MTC50364.2021.9459794

  5. M.M. Hossain Shuvo, N. Ahmed, K. Nouduri, K. Palaniappan, A hybrid approach for human activity recognition with support vector machine and 1D convolutional neural network, in 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Oct 2020, pp. 1–5. https://doi.org/10.1109/AIPR50011.2020.9425332

  6. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019). https://doi.org/10.1109/JPROC.2019.2918951

    Article  Google Scholar 

  7. P. Guo, B. Hu, R. Li, W. Hu, FoggyCache, in Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, Oct 2018, pp. 19–34. https://doi.org/10.1145/3241539.3241557

  8. H.-J. Jeong, H.-J. Lee, C.H. Shin, S.-M. Moon, IONN, in Proceedings of the ACM Symposium on Cloud Computing, Oct 2018, pp. 401–411. https://doi.org/10.1145/3267809.3267828

  9. B.L. Deng, G. Li, S. Han, L. Shi, Y. Xie, Model compression and hardware acceleration for neural networks: a comprehensive survey. Proc. IEEE 108(4), 485–532 (2020). https://doi.org/10.1109/JPROC.2020.2976475

    Article  Google Scholar 

  10. X. Xu, S. Yin, P. Ouyang, Fast and low-power behavior analysis on vehicles using smartphones, in 2017 6th International Symposium on Next Generation Electronics (ISNE), May 2017, pp. 1–4. https://doi.org/10.1109/ISNE.2017.7968748

  11. J. H. Al Shamsi, M. Al-Emran, K. Shaalan, Understanding key drivers affecting students’ use of artificial intelligence-based voice assistants. Educ. Inf. Technol. (2022). https://doi.org/10.1007/s10639-022-10947-3

  12. F. Shang, J. Lai, J. Chen, W. Xia, H. Liu, A model compression based framework for electrical equipment intelligent inspection on edge computing environment, in 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Apr 2021, pp. 406–410. https://doi.org/10.1109/ICCCBDA51879.2021.9442600

  13. Y.-L. Lee, P.-K. Tsung, M. Wu, Techology trend of Edge AI, in 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Apr 2018, pp. 1–2. https://doi.org/10.1109/VLSI-DAT.2018.8373244

  14. Y. Wu, Cloud-edge orchestration for the internet of things: architecture and AI-powered data processing. IEEE Internet Things J. 8(16), 12792–12805 (2021). https://doi.org/10.1109/JIOT.2020.3014845

    Article  Google Scholar 

  15. M. Al-Emran, J.M. Ehrenfeld, Breaking out of the box: wearable technology applications for detecting the spread of COVID-19. J. Med. Syst. 45(2), 20 (2021). https://doi.org/10.1007/s10916-020-01697-1

    Article  Google Scholar 

  16. R. Sachdev, Towards security and privacy for Edge AI in IoT/IoE based digital marketing environments, in 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), Apr 2020, pp. 341–346. https://doi.org/10.1109/FMEC49853.2020.9144755

  17. J.-W. Hong, I. Cruz, D. Williams, AI, you can drive my car: how we evaluate human drivers vs. self-driving cars. Comput. Hum. Behav. 125, 106944 (2021). https://doi.org/10.1016/j.chb.2021.106944

    Article  Google Scholar 

  18. Q. Liang, P. Shenoy, D. Irwin, AI on the edge: characterizing AI-based IoT applications using specialized edge architectures, in 2020 IEEE International Symposium on Workload Characterization (IISWC), Oct 2020, pp. 145–156. https://doi.org/10.1109/IISWC50251.2020.00023

  19. M.P. Véstias, R.P. Duarte, J.T. de Sousa, H.C. Neto, Moving deep learning to the edge. Algorithms 13(5), 125 (2020). https://doi.org/10.3390/a13050125

    Article  MathSciNet  Google Scholar 

  20. S. Ruder, An overview of gradient descent optimization algorithms (2016). arXiv preprint arXiv:1609.04747

  21. M.Z. Alom et al., A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019). https://doi.org/10.3390/electronics8030292

    Article  Google Scholar 

  22. M.M. Hossain Shuvo et al., Multi-focus image fusion for confocal microscopy using U-Net regression map, in 2020 25th International Conference on Pattern Recognition (ICPR), Jan 2021, pp. 4317–4323. https://doi.org/10.1109/ICPR48806.2021.9412122

  23. S. Han, J. Pool, J. Tran, W.J. Dally, Learning both weights and connections for efficient neural networks (2015). arXiv preprint arXiv:1506.02626

  24. A.G. Howard et al., Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:1704.04861

  25. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: inverted residuals and linear bottlenecks, in Conference on Computer Vision and Pattern Recognition (2018), pp. 4510–4520

    Google Scholar 

  26. F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size (2016). arXiv preprint arXiv:1602.07360

  27. X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: an extremely efficient convolutional neural network for mobile devices, in Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  28. A. Lavin, S. Gray, Fast algorithms for convolutional neural networks, in Conference on Computer Vision and Pattern Recognition (2016), pp. 4013–4021

    Google Scholar 

  29. R. Jozefowicz, W. Zaremba, I. Sutskever, An empirical exploration of recurrent network architectures, in International Conference on Machine Learning, pp. 2342–2350 (2015)

    Google Scholar 

  30. G.-B. Zhou, J. Wu, C.-L. Zhang, Z.-H. Zhou, Minimal gated unit for recurrent neural networks. Int. J. Autom. Comput. 13(3), 226–234 (2016). https://doi.org/10.1007/s11633-016-1006-2

    Article  Google Scholar 

  31. D. Neil, M. Pfeiffer, S.-C. Liu, Phased LSTM: accelerating recurrent network training for long or event-based sequences (2016). arXiv preprint arXiv:1610.09513

  32. H. Sak, A.W. Senior, F. Beaufays, Long short-term memory recurrent neural network architectures for large scale acoustic modeling (2014)

    Google Scholar 

  33. O. Kuchaiev, B. Ginsburg, Factorization tricks for LSTM networks (2017). arXiv preprint arXiv:1703.10722

  34. S. Zhang et al., Architectural complexity measures of recurrent neural networks. Adv. Neural. Inf. Process. Syst. 29, 1822–1830 (2016)

    Google Scholar 

  35. Z. He, S. Gao, L. Xiao, D. Liu, H. He, D. Barber, Wider and deeper, cheaper and faster: tensorized LSTMs for sequence learning (2017). arXiv preprint arXiv:1711.01577

  36. M. Zhu, T. Zhang, Z. Gu, Y. Xie, Sparse tensor core, in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Oct 2019, pp. 359–371. https://doi.org/10.1145/3352460.3358269

  37. X. Dai, H. Yin, N.K. Jha, NeST: a neural network synthesis tool based on a grow-and-prune paradigm. IEEE Trans. Comput. 68(10), 1487–1497 (2019). https://doi.org/10.1109/TC.2019.2914438

    Article  MathSciNet  MATH  Google Scholar 

  38. W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in deep neural networks. Adv. Neural. Inf. Process. Syst. 29, 2074–2082 (2016)

    Google Scholar 

  39. S. Cao et al., Efficient and effective sparse LSTM on FPGA with bank-balanced sparsity, in Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Feb 2019, pp. 63–72. https://doi.org/10.1145/3289602.3293898

  40. H. Wang, Q. Zhang, Y. Wang, L. Yu, H. Hu, Structured pruning for efficient ConvNets via incremental regularization, in 2019 International Joint Conference on Neural Networks (IJCNN), Jul 2019, pp. 1–8. https://doi.org/10.1109/IJCNN.2019.8852463

  41. T.-J. Yang, Y.-H. Chen, V. Sze, Designing energy-efficient convolutional neural networks using energy-aware pruning. Proc. IEEE, 5687–5695 (2017)

    Google Scholar 

  42. M. Horowitz, 1.1 computing’s energy problem (and what we can do about it), in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb 2014, pp. 10–14. https://doi.org/10.1109/ISSCC.2014.6757323

  43. N. Wang, J. Choi, D. Brand, C.-Y. Chen, K. Gopalakrishnan, Training deep neural networks with 8-bit floating point numbers, in International Conference on Neural Information Processing Systems (2018), pp. 7686–7695

    Google Scholar 

  44. P. Gysel, M. Motamedi, S. Ghiasi, Hardware-oriented approximation of convolutional neural networks (2016). arXiv preprint arXiv:1604.03168

  45. M.A. Nasution, D. Chahyati, M.I. Fanany, Faster R-CNN with structured sparsity learning and Ristretto for mobile environment, in 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Oct 2017, pp. 309–314. https://doi.org/10.1109/ICACSIS.2017.8355051

  46. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or −1 (2016) arXiv preprint arXiv:1602.02830

  47. M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, XNOR-Net: ImageNet classification using binary convolutional neural networks (2016), pp. 525–542. https://doi.org/10.1007/978-3-319-46493-0_32

  48. Z. Cai, X. He, J. Sun, N. Vasconcelos, Deep learning with low precision by half-wave Gaussian quantization, in Conference on Computer Vision and Pattern Recognition (2017), pp. 5918–5926

    Google Scholar 

  49. F. Li, B. Zhang, B. Liu, Ternary weight networks (2016). arXiv preprint arXiv:1605.04711

  50. M. Covell, D. Marwood, S. Baluja, N. Johnston, Table-based neural units: fully quantizing networks for multiply-free inference (2019). arXiv preprint arXiv:1906.04798

  51. W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural networks with the hashing trick, in International Conference on Machine Learning (2015), pp. 2285–2294

    Google Scholar 

  52. E.H. Lee, D. Miyashita, E. Chai, B. Murmann, S.S. Wong, LogNet: energy-efficient neural networks using logarithmic computation, in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 2017, pp. 5900–5904. https://doi.org/10.1109/ICASSP.2017.7953288

  53. S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding (2015). arXiv preprint arXiv:1510.00149

  54. L. Wang, K.-J. Yoon, Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans. Pattern Anal. Mach. Intell., p. 1 (2021). https://doi.org/10.1109/TPAMI.2021.3055564

  55. G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network (2015). arXiv preprint arXiv:1503.02531

  56. Z. Huang, N. Wang, Like what you like: knowledge distill via neuron selectivity transfer (2017). arXiv preprint arXiv:1707.01219

  57. A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, Y. Bengio, Fitnets: hints for thin deep nets (2014). arXiv preprint arXiv:1412.6550

  58. B. Heo, M. Lee, S. Yun, J.Y. Choi, Knowledge transfer via distillation of activation boundaries formed by hidden neurons. Proc. AAAI Conf. Artifi. Intell. 33, 3779–3787 (2019). https://doi.org/10.1609/aaai.v33i01.33013779

    Article  Google Scholar 

  59. D. Li, X. Wang, D. Kong, Deeprebirth: accelerating deep neural network execution on mobile devices. AAAI Conf. Artifi. Intell. 32(1) (2018)

    Google Scholar 

  60. L. Yuan, F. E.H. Tay, G. Li, T. Wang, J. Feng, Revisiting knowledge distillation via label smoothing regularization, in Conference on Computer Vision and Pattern Recognition (2020), pp. 3903–3911

    Google Scholar 

  61. S.I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, H. Ghasemzadeh, Improved knowledge distillation via teacher assistant. Proc. AAAI Conf. Artif. Intell. 34(04), 5191–5198 (2020). https://doi.org/10.1609/aaai.v34i04.5963

    Article  Google Scholar 

  62. Y. Zhang, T. Xiang, T.M. Hospedales, H. Lu, Deep mutual learning, in Conference on Computer Vision and Pattern Recognition (2018), pp. 4320–4328

    Google Scholar 

  63. O. Bohdal, Y. Yang, T. Hospedales, Flexible dataset distillation: learn labels instead of images (2020). arXiv preprint arXiv:2006.08572

  64. E. Park et al., Big/little deep neural network for ultra low power inference, in 2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES + ISSS), Oct 2015, pp. 124–132. https://doi.org/10.1109/CODESISSS.2015.7331375

  65. H. Tann, S. Hashemi, R.I. Bahar, S. Reda, Runtime configurable deep neural networks for energy-accuracy trade-off, in International Conference on Hardware/Software Codesign and System Synthesis (2016), pp. 1–10

    Google Scholar 

  66. S. Teerapittayanon, B. McDanel, H.T. Kung, BranchyNet: fast inference via early exiting from deep neural networks, in 2016 23rd International Conference on Pattern Recognition (ICPR), Dec 2016, pp. 2464–2469. https://doi.org/10.1109/ICPR.2016.7900006

  67. J. Chen, X. Ran, Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655–1674 (2019). https://doi.org/10.1109/JPROC.2019.2921977

    Article  Google Scholar 

  68. Y. Jia et al., Caffe, in Proceedings of the 22nd ACM International Conference on Multimedia (2014), pp. 675–678. https://doi.org/10.1145/2647868.2654889

  69. A. Paszke et al., Pytorch: an imperative style, high-performance deep learning library, in Advances in Neural Information Processing Systems (2019), pp. 8026–8037

    Google Scholar 

  70. M. Abadi et al., Tensorflow: a system for large-scale machine learning, in 12th USENIX symposium on operating systems design and implementation (OSDI) (2016), pp. 265–283

    Google Scholar 

  71. J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, H.-J. Yoo, UNPU: a 50.6TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision, in 2018 IEEE International Solid—State Circuits Conference—(ISSCC), Feb 2018, pp. 218–220. https://doi.org/10.1109/ISSCC.2018.8310262

  72. B. Moons, R. Uytterhoeven, W. Dehaene, M. Verhelst, 14.5 envision: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28 nm FDSOI, in 2017 IEEE International Solid-State Circuits Conference (ISSCC), Feb 2017, pp. 246–247. https://doi.org/10.1109/ISSCC.2017.7870353

  73. D. Han, J. Lee, J. Lee, H.-J. Yoo, A 1.32 TOPS/W energy efficient deep neural network learning processor with direct feedback alignment based heterogeneous core architecture, in 2019 Symposium on VLSI Circuits, Jun 2019, pp. C304–C305. https://doi.org/10.23919/VLSIC.2019.8778006

  74. AI for the Edge, https://www.gyrfalcontech.ai/solutions/

  75. A. Shawahna, S.M. Sait, A. El-Maleh, FPGA-based accelerators of deep learning networks for learning and classification: a review. IEEE Access 7, 7823–7859 (2019). https://doi.org/10.1109/ACCESS.2018.2890150

    Article  Google Scholar 

  76. K. Guo et al., Angel-Eye: a complete design flow for mapping CNN onto embedded FPGA. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 37(1), 35–47 (2018). https://doi.org/10.1109/TCAD.2017.2705069

    Article  Google Scholar 

  77. S.I. Venieris, C.-S. Bouganis, fpgaConvNet: mapping regular and irregular convolutional neural networks on FPGAs. IEEE Trans. Neural Netw. Learn. Syst. 30(2), 326–342 (2019). https://doi.org/10.1109/TNNLS.2018.2844093

    Article  Google Scholar 

  78. Y.-H. Chen, T. Krishna, J.S. Emer, V. Sze, Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid-State Circ. 52(1), 127–138 (2017). https://doi.org/10.1109/JSSC.2016.2616357

    Article  Google Scholar 

  79. Y.-H. Chen, T.-J. Yang, J.S. Emer, V. Sze, Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices. IEEE J. Emerg. Sel. Top. Circ. Syst. 9(2), 292–308 (2019). https://doi.org/10.1109/JETCAS.2019.2910232

    Article  Google Scholar 

  80. EyeQ The System-on-Chip for Automotive Applications. https://www.mobileye.com/eyeq-chip/

  81. L. Lai, N. Suda, V. Chandra, CMSIS-NN: efficient neural network kernels for arm cortex-M CPUs (2018). arXiv preprint arXiv:1801.06601

  82. B. Fan, X. Liu, X. Su, P. Hui, J. Niu, EmgAuth: an EMG-based smartphone unlocking system using siamese network, in 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom), Mar 2020, pp. 1–10. https://doi.org/10.1109/PerCom45495.2020.9127387

  83. D. Wen, H. Han, A.K. Jain, Face spoof detection with image distortion analysis. IEEE Trans. Inf. For. Secur. 10(4), 746–761 (2015). https://doi.org/10.1109/TIFS.2015.2400395

  84. S. Bhattacharya, N.D. Lane, From smart to deep: robust activity recognition on smartwatches using deep learning, in 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Mar 2016, pp. 1–6. https://doi.org/10.1109/PERCOMW.2016.7457169

  85. A. Mathur, N.D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, F. Kawsar, “DeepEye,” in Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, Jun 2017, pp. 68–81. https://doi.org/10.1145/3081333.3081359

  86. C. Streiffer, R. Raghavendra, T. Benson, M. Srivatsa, “Darnet,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference on Industrial Track—Middleware’17, 2017, pp. 22–28. https://doi.org/10.1145/3154448.3154452

  87. B. Wang, F. Ma, L. Ge, H. Ma, H. Wang, M.A. Mohamed, Icing-EdgeNet: a pruning lightweight edge intelligent method of discriminative driving channel for ice thickness of transmission lines. IEEE Trans. Instrum. Meas. 70, 1–12 (2021). https://doi.org/10.1109/TIM.2020.3018831

    Article  Google Scholar 

  88. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  89. S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, B. Li, Hardware acceleration of sparse and irregular tensor computations of ML models: a survey and insights. Proc. IEEE 109(10), 1706–1752 (2021). https://doi.org/10.1109/JPROC.2021.3098483

    Article  Google Scholar 

  90. Z. Chen, B. Liu, in Lifelong Machine Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 12(3), 2nd edn. (2018), pp. 1–207. https://doi.org/10.2200/S00832ED1V01Y201802AIM037

Download references

Acknowledgements

The author would like to thank Dr. Syed Kamrul Islam, Professor and Chair, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA, for his constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Maruf Hossain Shuvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shuvo, M.M.H. (2022). Edge AI: Leveraging the Full Potential of Deep Learning. In: Al-Emran, M., Shaalan, K. (eds) Recent Innovations in Artificial Intelligence and Smart Applications. Studies in Computational Intelligence, vol 1061. Springer, Cham. https://doi.org/10.1007/978-3-031-14748-7_2

Download citation

Publish with us

Policies and ethics