Skip to main content

Matrix-variate Smooth Transition Models for Temporal Networks

  • Chapter
  • First Online:
Innovations in Multivariate Statistical Modeling

Abstract

In many fields, network analysis is used to investigate complex relationships. The increased availability of temporal network data opens the way to the statistical analysis of the network topology and its dynamics. In addition network data are subject to measurement errors and random fluctuations. This calls for realistic time series models which account for relevant features of the data. In this chapter, we propose a new modeling and inference framework for studying matrix-valued panel data characterized by nonlinear dynamics and heavy tails. We assume a smooth transition model for the dynamics and a matrix-variate t distribution for the error term and show how the model can be used in temporal network analysis. Some properties of the model including the close-form expression for the predictor are given. We adopt a Bayesian approach to inference and design an efficient Markov chain Monte Carlo algorithm for approximating the posterior distribution. We apply the proposed model to a volatility network among European firms and an international oil production network and show its ability to account for structural changes. Our framework is motivated by temporal network data, nevertheless, it is general and can be of interest to all researchers interested in the analysis of matrix-variate time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The study of financial spillovers can also be performed by focusing on tail networks obtained from return quantile regressions [14]. We leave this application to future extensions of the proposed STR-MAR model.

  2. 2.

    The list of the firms, the countries, and the information about their GICS sectors and industries are available upon request to the Authors.

  3. 3.

    The estimation algorithm has been parallelized and implemented in MATLAB on two nodes at the High-Performance Computing (HPC) cluster at VERA, Ca’ Foscari University of Venice. Each node has 2 CPUs Intel Xeon with 20 cores 2.4 GHz and 768 GB of RAM.

References

  1. Acemoglu, D., Ozdaglar, A., & Tahbaz-Salehi, A. (2015). Systemic risk and stability in financial networks. American Economic Review, 105(2), 564–608.

    Article  Google Scholar 

  2. Acharya, V., Engle, R., & Richardson, M. (2012). Capital shortfall: A new approach to ranking and regulating systemic risks. American Economic Review, 102(3), 59–64.

    Article  Google Scholar 

  3. Al Rousan, S. ., Sbia, R. ., & Onur Tas, B. K. (2018). Analysis of OPEC and non-OPEC members. A dynamic network analysis of the world oil market. Energy Economics, 75, 28–41.

    Article  Google Scholar 

  4. Anderson, H. M., Nam, K., & Vahid, F. (1999). Asymmetric nonlinear smooth transition GARCH models. In Nonlinear time series analysis of economic and financial data (pp. 191–207). Springer.

    Google Scholar 

  5. Andrieu, C., & Thoms, J. (2008). A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343–373.

    Article  MathSciNet  Google Scholar 

  6. Atchadé, Y. F., & Rosenthal, J. S. et al. (2005). On adaptive Markov chain Monte Carlo algorithms. Bernoulli, 11(5), 815–828.

    Google Scholar 

  7. Bacon, D. W., & Watts, D. G. (1971). Estimating the transition between two intersecting straight lines. Biometrika, 58(3), 525–534.

    Google Scholar 

  8. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. In Third International AAAI Conference on Weblogs and Social Media.

    Google Scholar 

  9. Billio, M., Casarin, R., Costola, M., & Frattarolo, L. (2019). Opinion dynamics and disagreements on financial networks. Advances in Decision Sciences, 23(4), 1–27.

    Google Scholar 

  10. Billio, M., Casarin, R., Costola, M., & Iacopini, M. (2021). COVID-19 spreading in financial networks: A semiparametric matrix regression model. Econometrics and Statistics, forthcoming.

    Google Scholar 

  11. Billio, M., Casarin, R., Costola, M., & Iacopini, M. (2021). A matrix-variate t model for networks. Frontiers in Artificial Intelligence, 4, 49.

    Article  Google Scholar 

  12. Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104(3), 535–559.

    Google Scholar 

  13. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C., Gómez-Gardenes, J., Romance, M., et al. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.

    Article  MathSciNet  Google Scholar 

  14. Bonaccolto, G., Caporin, M., & Panzica, R. (2019). Estimation and model-based combination of causality networks among large us banks and insurance companies. Journal of Empirical Finance, 54, 1–21.

    Article  Google Scholar 

  15. Calderón, S. A. V., & Nieto, F. H. (2017). Bayesian analysis of multivariate threshold autoregressive models with missing data. Communications in Statistics-Theory and Methods, 46(1), 296–318.

    Google Scholar 

  16. Camacho, M. (2004). Vector smooth transition regression models for US GDP and the composite index of leading indicators. Journal of Forecasting, 23(3), 173–196.

    Article  Google Scholar 

  17. Carvalho, C. M., & West, M. et al. (2007). Dynamic matrix-variate graphical models. Bayesian Analysis, 2(1), 69–97.

    Google Scholar 

  18. Casarin, R., Iacopini, M., Molina, G., ter Horst, E., Espinasa, R., Sucre, C., & Rigobon, R. (2020). Multilayer network analysis of oil linkages. The Econometrics Journal, 23(2), 269–296.

    Article  MathSciNet  MATH  Google Scholar 

  19. Celeux, G., Forbes, F., Robert, C. P., & Mike, D. (2006). Titterington. Deviance information criteria for missing data models. Bayesian Analysis, 1(4), 651–673.

    Google Scholar 

  20. Chan, F., & McAleer, M. (2002). Maximum likelihood estimation of STAR and STAR-GARCH models: Theory and Monte Carlo evidence. Journal of Applied Econometrics, 17(5), 509–534.

    Article  Google Scholar 

  21. Chan, F., & McAleer, M. (2003). Estimating smooth transition autoregressive models with GARCH errors in the presence of extreme observations and outliers. Applied Financial Economics, 13(8), 581–592.

    Article  Google Scholar 

  22. Chen, C. W. S., & Lee, J. C. (1995). Bayesian inference of threshold autoregressive models. Journal of Time Series Analysis, 16(5), 483–492.

    Google Scholar 

  23. Chen, C. Y.-H., Härdle, W. K., & Okhrin, Y. (2019). Tail event driven networks of sifis. Journal of Econometrics, 208(1), 282–298.

    Google Scholar 

  24. Chen, E. Y., Tsay, R. S., & Chen, R. (2020). Constrained factor models for high-dimensional matrix-variate time series. Journal of the American Statistical Association, 115(530), 775–793.

    Google Scholar 

  25. Chen, R., Xiao, H., & Yang, D. (2021). Autoregressive models for matrix-valued time series. Journal of Econometrics, 222(1), 539–560.

    Article  MathSciNet  MATH  Google Scholar 

  26. S., Tiwari, R. C., & Jammalamadaka, S. R. (1988). Bayes prediction in regressions with elliptical errors. Journal of Econometrics, 38(3), 349–360.

    Google Scholar 

  27. Chini, E. Z. (2018). Forecasting dynamically asymmetric fluctuations of the US business cycle. International Journal of Forecasting, 34(4), 711–732.

    Google Scholar 

  28. Cohen, M. (2010). STEO supplement: Why are oil prices so high.

    Google Scholar 

  29. Davis, G. M., & Ensor, K. B. (2007). Multivariate time-series analysis with categorical and continuous variables in an lstr model. Journal of Time Series Analysis, 28(6), 867–885.

    Google Scholar 

  30. Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134.

    Google Scholar 

  31. van Dijk, D., Teräsvirta, T., & Franses, P. H. (2002). Smooth transition autoregressive models-a survey of recent developments. Econometric Reviews, 21(1), 1–47.

    Google Scholar 

  32. Economou, E., Agnolucci, P., Fattouh, B., & De Lipis, V. (2017). A structural model of the world oil market: The role of investment dynamics and capacity constraints. Oxford Institute for Energy Studies.–2017.–WPM, 75:40.

    Google Scholar 

  33. Eitrheim, Ø., & Teräsvirta, T. (1996). Testing the adequacy of smooth transition autoregressive models. Journal of Econometrics, 74(1), 59–75.

    Article  MathSciNet  MATH  Google Scholar 

  34. Elliott, M., Golub, B., & Jackson, M. O. (2014). Financial networks and contagion. American Economic Review, 104(10), 3115–53.

    Google Scholar 

  35. Espinasa, R., Horst, E. T., Reyes, S. G., Manzano, O., Molina, G., & Rigobon, R. (2017). A micro-based model for world oil market. Energy Economics, 66, 431–449.

    Google Scholar 

  36. Fonseca, T. C., Ferreira, M. A. R., & Migon, H. S. (2008). Objective Bayesian analysis for the Student-t regression model. Biometrika, 95(2), 325–333.

    Google Scholar 

  37. Franses, P. H., Neele, J., van Dijk, D. et al. (1998). Forecasting volatility with switching persistence GARCH models. Technical report, Econometric Institute, Erasmus University Rotterdam.

    Google Scholar 

  38. Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. Journal of Business, 53(1), 67–78.

    Google Scholar 

  39. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis. CRC Press.

    Google Scholar 

  40. Gerlach, R., & Chen, C. W. S. (2008). Bayesian inference and model comparison for asymmetric smooth transition heteroskedastic models. Statistics and Computing, 18(4), 391.

    Article  MathSciNet  Google Scholar 

  41. Geweke, J. (1993). Bayesian treatment of the independent Student-t linear model. Journal of Applied Econometrics, 8(S1), S19–S40.

    Article  Google Scholar 

  42. Geweke, J., & Terui, N. (1993). Bayesian threshold autoregressive models for nonlinear time series. Journal of Time Series Analysis, 14(5), 441–454.

    Article  MathSciNet  MATH  Google Scholar 

  43. González, A., Teräsvirta, T., & van Dijk, D. (2005). Panel smooth transition regression models. Technical report, SSE/EFI Working Paper Series in Economics and Finance.

    Google Scholar 

  44. González-Rivera, G. (1998). Smooth-transition GARCH models. Studies in Nonlinear Dynamics & Econometrics, 3(2).

    Google Scholar 

  45. Gupta, A. K., & Nagar, D. K. (1999). Matrix variate distributions. CRC Press.

    Google Scholar 

  46. Hamilton, J. D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics, 45(1–2), 39–700.

    Google Scholar 

  47. Holmes, J. B., & Schofield, M. R. (2020). Moments of the logit-normal distribution. Communications in statisticsTheory and methods, forthcoming.

    Google Scholar 

  48. Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36(1–2), 149–176.

    Google Scholar 

  49. Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review, 99(3), 1053–1069.

    Article  Google Scholar 

  50. Kilian, L. (2019). Measuring global real economic activity: Do recent critiques hold up to scrutiny? Economics Letters, 178, 106–110.

    Article  Google Scholar 

  51. Kumins, L. C., & Bamberger, R. (2005). Oil and gas disruption from hurricanes Katrina and Rita. Congressional Research Service, Library of Congress.

    Google Scholar 

  52. Landim, F., & Gamerman, D. (2000). Dynamic hierarchical models: An extension to matrix-variate observations. Computational Statistics & Data Analysis, 35(1), 11–42.

    Article  MathSciNet  MATH  Google Scholar 

  53. Leng, C., & Tang, C. Y. (2012). Sparse matrix graphical models. Journal of the American Statistical Association, 107(499), 1187–1200.

    Google Scholar 

  54. Li, K., Fang, L., & Tao, L. (2019). Bayesian panel smooth transition model with spatial correlation. Plos One, 14(3), e0211467.

    Google Scholar 

  55. Lin, C.-F. J., & Teräsvirta, T. (1994). Testing the constancy of regression parameters against continuous structural change. Journal of Econometrics, 62(2), 211–228.

    Google Scholar 

  56. Livingston, Jr. G., & Nur, D. (2017). Bayesian inference for smooth transition autoregressive (STAR) model: A prior sensitivity analysis. Communications in Statistics-Simulation and Computation, 46(7), 5440–5461.

    Google Scholar 

  57. Lubrano, M. (2000). Bayesian analysis of nonlinear time-series models with a threshold. In W. A. Barnett, D. F. Hendry, S. Hylleberg, T. Terasvirta, D. Tjostheimand, & A. W. Wurtz, (Eds.), Nonlinear Econometric Modeling in Time Series: Proceedings of the Eleventh International Symposium in Economic Theory. Cambridge University Press.

    Google Scholar 

  58. Lundbergh, S., & Teräsvirta, T. et al. (1999). Modelling economic high-frequency time series with STAR-STGARCH models. Tinbergen Institute.

    Google Scholar 

  59. Lütkepohl, H., & Netšunajev, A. (2017). Structural vector autoregressions with smooth transition in variances. Journal of Economic Dynamics and Control, 84, 43–57.

    Article  MathSciNet  MATH  Google Scholar 

  60. McAleer, M., & Medeiros, M. C. (2008). A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries. Journal of Econometrics, 147(1), 104–119.

    Google Scholar 

  61. Osiewalski, J., & Steel, M. F. J. (1993). Bayesian marginal equivalence of elliptical regression models. Journal of Econometrics, 59(3), 391–403.

    Google Scholar 

  62. Osiewalski, J., & Steel, M. F. J. (1993). Robust Bayesian inference in elliptical regression models. Journal of Econometrics, 57(1), 345–363.

    Google Scholar 

  63. Peguin-Feissolle, A. (1994). Bayesian estimation and forecasting in non-linear models application to an LSTAR model. Economics Letters, 46(3), 187–194.

    Article  MATH  Google Scholar 

  64. Robert, C. P. (2007). The Bayesian choice: From decision-theoretic foundations to computational implementation. Springer.

    Google Scholar 

  65. Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods. Springer.

    Google Scholar 

  66. Silvennoinen, A., & Teräsvirta, T. (2009). Modeling multivariate autoregressive conditional heteroskedasticity with the double smooth transition conditional correlation GARCH model. Journal of Financial Econometrics, 7(4), 373–411.

    Article  Google Scholar 

  67. Silvennoinen, A., & Teräsvirta, T. (2021). Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation garch model. Econometrics and Statistics, forthcoming.

    Google Scholar 

  68. Steel, M. F. J. (1998). Bayesian analysis of stochastic volatility models with flexible tails. Econometric Reviews, 17(2), 109–143.

    Google Scholar 

  69. Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89(425), 208–218.

    MATH  Google Scholar 

  70. Teräsvirta, T. (1998). Modeling economic relationships with smooth transition regressions. In A. Ullah & D. E. A. Giles (Eds.), Handbook of applied economic statistics. CRC Press.

    Google Scholar 

  71. Thompson, G. Z., Maitra, R., Meeker, W. Q., & Bastawros, A. F. (2020). Classification with the matrix-variate-t distribution. Journal of Computational and Graphical Statistics, 29(3), 668–674.

    Google Scholar 

  72. Tong, H. (2011). Threshold models in time series analysis-30 years on. Statistics and its Interface, 4(2), 107–118.

    Article  MathSciNet  MATH  Google Scholar 

  73. Triantafyllopoulos, K. (2008). Missing observation analysis for matrix-variate time series data. Statistics & Probability Letters, 78(16), 2647–2653.

    Article  MathSciNet  MATH  Google Scholar 

  74. Wang, D., Liu, X., & Chen, R. (2019). Factor models for matrix-valued high-dimensional time series. Journal of Econometrics, 208(1), 231–248.

    Article  MathSciNet  MATH  Google Scholar 

  75. Wang, H., & West, M. (2009). Bayesian analysis of matrix normal graphical models. Biometrika, 96(4), 821–834.

    Article  MathSciNet  MATH  Google Scholar 

  76. Wang, J. J. J., Chan, J. S. K., & Boris Choy, S. T. (2011). Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures. Computational Statistics & Data Analysis, 55(1), 852–862.

    Google Scholar 

  77. Yu, L., He, Y., Kong, X., & Zhang, X. (2021). Projected estimation for large-dimensional matrix factor models. Journal of Econometrics, forthcoming.

    Google Scholar 

  78. Zellner, A. (1976). Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t error terms. Journal of the American Statistical Association, 71(354), 400–405.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research used the SCSCF and the HPC multiprocessor cluster systems provided by the Venice Centre for Risk Analytics (VERA) at the Ca’ Foscari University of Venice. MB, RC, and MC acknowledge financial support from the Italian Ministry MIUR under the PRIN project Hi-Di NET—Econometric Analysis of High-Dimensional Models with Network Structures in Macroeconomics and Finance (grant agreement no. 2017TA7TYC). MI acknowledges financial support from the Marie Skłodowska-Curie Actions, European Union, Seventh Framework Program HORIZON 2020 under REA grant agreement no. 887220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Billio .

Editor information

Editors and Affiliations

Appendix—Posterior approximation

Appendix—Posterior approximation

The Gibbs sampler iterates the following steps:

  1. 1.

    Draw \((\nu ,\textbf{W})\) from the joint posterior distribution \(P(\nu ,\textbf{W} | \textbf{Y},\textbf{x},B_1,B_2,\Sigma _1,\Sigma _2,\alpha ,\delta )\) with a collapsed-Gibbs step that first samples \(\nu \!\sim \! P(\nu |\textbf{Y},B_1,B_2,\Sigma _1,\Sigma _2,\alpha ,\delta )\) and then \(\textbf{W} \!\sim \! P(\textbf{W} | \textbf{Y},\textbf{x},B_1,B_2,\Sigma _1,\Sigma _2,\nu ,\alpha ,\delta )\).

  2. 2.

    Draw \({\text {vec}}(B_j)\) from the multivariate normal distribution \(P(\textrm{vec}\big (B_j\big ) | \textbf{Y},\textbf{x},\textbf{W},\Sigma _1,\Sigma _2,\alpha ,\delta )\).

  3. 3.

    Draw \(\Sigma _1\) from the Wishart distribution \(P(\Sigma _1 | \textbf{W},\nu )\).

  4. 4.

    Draw \(\Sigma _2\) from the inverse Wishart distribution \(P(\Sigma _2 | \textbf{Y},\textbf{x},B_1,B_2,\textbf{W},\alpha ,\delta )\).

  5. 5.

    Draw \(\alpha \) and \(\delta \) from their joint full conditional distribution \(P(\alpha ,\delta |\textbf{Y},\textbf{x},B_1,B_2,\textbf{W},\Sigma _2)\) using an adaptive Metropolis–Hastings algorithm.

In the following, we provide the derivation of the full conditional distributions used in the Gibbs sampler and discuss the sampling methods.

Sampling \(B_1\). Let \(\tilde{Y}_t = Y_t - (1-\phi (x_t; \alpha ,\delta ))B_2\). The coefficient matrix \(B_1\) is drawn from the posterior full conditional distribution

$$\begin{aligned}&P(B_1 | \textbf{Y},\textbf{W},\textbf{x},B_2,\Sigma _1,\Sigma _2) \propto P(B_1) P(\textbf{Y},\textbf{W}|\textbf{x},B_1,B_2,\Sigma _1,\Sigma _2,\alpha ,\delta ) \\&\propto \exp \Big ( \!\!-\!\frac{1}{2} {\text {tr}}\big ( \textrm{vec}\big (B_1\big )' (\underline{\Omega }_2 \otimes \underline{\Omega }_1)^{-1} \textrm{vec}\big (B_1\big ) \big ) \\&\quad -\frac{1}{2} \sum _{t=1}^T {\text {tr}}\big ( \textrm{vec}\big (\tilde{Y\big )_t-\phi (x_t; \alpha ,\delta )B_1}' (\Sigma _2 \otimes W_t)^{-1} \textrm{vec}\big (\tilde{Y\big )_t-\phi (x_t; \alpha ,\delta )B_1} \big ) \Big ) \\&\propto \exp \Big ( \!\!-\!\frac{1}{2} {\text {tr}}\big ( \textrm{vec}\big (B_1\big )' \big [ (\underline{\Omega }_2 \otimes \underline{\Omega }_1)^{-1} + \!\sum _{t=1}^T (\Sigma _2 \otimes W_t)^{-1} \phi (x_t; \alpha ,\delta )^2 \big ] \textrm{vec}\big (B_1\big ) \\&\quad -2 \!\sum _{t=1}^T \textrm{vec}\big (\tilde{Y\big )_t}' (\Sigma _2 \otimes W_t)^{-1} \phi (x_t; \alpha ,\delta ) \textrm{vec}\big (B_1\big ) \big ) \Big ) \\&\propto \exp \Big ( \!\!-\!\frac{1}{2} {\text {tr}}\big ( \textrm{vec}\big (B_1\big )' \overline{\Omega }_1^{-1} \textrm{vec}\big (B_1\big ) -2\textrm{vec}\big (\overline{M\big )_1}' \overline{\Omega }_1^{-1} \textrm{vec}\big (B_1\big ) \big ) \Big ), \end{aligned}$$

where

$$\begin{aligned} \overline{\Omega }_1&= \Big [ (\underline{\Omega }_2 \otimes \underline{\Omega }_1)^{-1} + \sum _{t=1}^T (\Sigma _2 \otimes W_t)^{-1} \phi (x_t; \alpha ,\delta )^2 \Big ]^{-1},\\ \textrm{vec}\big (\overline{M\big )_1}&= \overline{\Omega }_1 \sum _{t=1}^T (\Sigma _2 \otimes W_t)^{-1} \phi (x_t; \alpha ,\delta ) \textrm{vec}\big (\tilde{Y\big )_t} \end{aligned}$$

meaning that \(\textrm{vec}\big (B_1\big ) \sim \mathcal {N}_{n^2}(\textrm{vec}\big (\overline{M\big )_1},\overline{\Omega }_1)\).

Sampling \(B_2\). Let \(\bar{Y}_t = Y_t - \phi (x_t; \alpha ,\delta )B_1\). The coefficient matrix \(B_2\) is drawn from the posterior full conditional distribution

$$\begin{aligned}&P(B_2 | \textbf{Y},\textbf{W},\textbf{x},B_1,\Sigma _1,\Sigma _2,\alpha ,\delta ) \propto P(B_2) P(\textbf{Y},\textbf{W}|\textbf{x},B_1,B_2,\Sigma _1,\Sigma _2,\alpha ,\delta ) \\&\propto \exp \Big ( \!\!-\!\frac{1}{2} {\text {tr}}\big ( \textrm{vec}\big (B_2\big )' (\underline{\Omega }_2 \otimes \underline{\Omega }_1)^{-1} \textrm{vec}\big (B_2\big ) \big ) \\&\quad -\frac{1}{2} \!\sum _{t=1}^T {\text {tr}}\big ( \textrm{vec}\big (\bar{Y\big )_t-(1-\phi (x_t; \alpha ,\delta ))B_2}' (\Sigma _2 \otimes W_t)^{-1} \textrm{vec}\big (\bar{Y\big )_t-(1-\phi (x_t; \alpha ,\delta ))B_2} \big ) \Big ) \\&\propto \exp \Big ( \!\!-\!\frac{1}{2} {\text {tr}}\big ( \textrm{vec}\big (B_2\big )' \big [ (\underline{\Omega }_2 \otimes \underline{\Omega }_1)^{-1} + \!\sum _{t=1}^T (\Sigma _2 \otimes W_t)^{-1} (1-\phi (x_t; \alpha ,\delta ))^2 \big ] \textrm{vec}\big (B_2\big ) \\&\quad - 2 \!\sum _{t=1}^T \textrm{vec}\big (\bar{Y\big )_t}' (\Sigma _2 \otimes W_t)^{-1} (1-\phi (x_t; \alpha ,\delta )) \textrm{vec}\big (B_2\big ) \big ) \Big ) \\&\propto \exp \Big ( \!\!-\!\frac{1}{2} {\text {tr}}\big ( \textrm{vec}\big (B_2\big )' \overline{\Omega }_2^{-1} \textrm{vec}\big (B_2\big ) -2\textrm{vec}\big (\overline{M\big )_2}' \overline{\Omega }_2^{-1} \textrm{vec}\big (B_2\big ) \big ) \Big ), \end{aligned}$$

where

$$\begin{aligned} \overline{\Omega }_2&= \Big [ (\underline{\Omega }_2 \otimes \underline{\Omega }_1)^{-1} + \sum _{t=1}^T (\Sigma _2 \otimes W_t)^{-1} (1-\phi (x_t; \alpha ,\delta ))^2 \Big ]^{-1},\\ \textrm{vec}\big (\overline{M\big )_2}&= \overline{\Omega }_2 \sum _{t=1}^T (\Sigma _2 \otimes W_t)^{-1} (1-\phi (x_t; \alpha ,\delta )) \textrm{vec}\big (\bar{Y\big )_t} \end{aligned}$$

meaning that \(\textrm{vec}\big (B_2\big ) \sim \mathcal {N}_{n^2}(\textrm{vec}\big (\overline{M\big )_2},\overline{\Omega }_2)\).

Sampling \(W_t\). The auxiliary covariance matrices \(W_t\), \(t=1,\ldots ,T\), are drawn from the posterior full conditional distribution

$$\begin{aligned} P(W_t&| \textbf{Y},\textbf{x},B_1,B_2, \Sigma _1, \Sigma _2,\nu ,\alpha ,\delta ) \propto P(\textbf{Y},\textbf{W}|\textbf{x},B_1,B_2,\Sigma _1,\Sigma _2,\nu ,\alpha ,\delta ) \\&\propto {\big |W_t\big |}^{-\frac{n+\nu +n+1 +n-1}{2}} \exp \Big ( \!\!-\!\frac{1}{2} {{\,\textrm{tr}\,}}\big ( (Y_t-M_t) \Sigma _2^{-1} (Y_t-M_t)' W_t^{-1} \big ) -\frac{1}{2} {{\,\textrm{tr}\,}}\big ( \Sigma _1 W_t^{-1}) \big ) \Big ) \\&\propto {\big |W_t\big |}^{-\frac{(\nu +2n-1)+n+1}{2}} \exp \Big ( \!\!-\!\frac{1}{2} {{\,\textrm{tr}\,}}\big ( \Sigma _1 + (Y_t-M_t) \Sigma _2^{-1} (Y_t-M_t)' W_t^{-1} \big ) \Big ) \\&\propto \mathcal{I}\mathcal{W}_n( \overline{W}, \overline{\nu } ) \end{aligned}$$

where

$$\begin{aligned} \overline{W} = \Sigma _1 + (Y_t-M_t) \Sigma _2^{-1} (Y_t-M_t)', \qquad \overline{\nu } = \nu +2n-1. \end{aligned}$$

Sampling \(\Sigma _1\). Given a Wishart prior, the posterior full conditional distribution for \(\Sigma _1\) is conjugate and obtained as follows:

$$\begin{aligned} P(\Sigma _1 | \textbf{W},\nu )&\propto P(\Sigma _1|\gamma ) P(\textbf{W}|\Sigma _1,\nu ) \\&\propto {\big |\Sigma _1\big |}^{\frac{\underline{\kappa }_1-n-1}{2}} \exp \Big ( \!\!-\!\frac{1}{2} {{\,\textrm{tr}\,}}\big (\underline{\Psi }_1 \Sigma _1\big ) \Big ) \prod _{t=1}^T {\big |\Sigma _1\big |}^{\frac{\nu +n-1}{2}} \exp \Big ( \!\!-\!\frac{1}{2} {{\,\textrm{tr}\,}}\big (\Sigma _1 W_t^{-1}\big ) \Big ) \\&\propto {\big |\Sigma _1\big |}^{\frac{(\underline{\kappa }_1+T(\nu +n-1))-n-1}{2}} \exp \Big ( \!\!-\!\frac{1}{2} {{\,\textrm{tr}\,}}\big (\underline{\Psi }_1 \Sigma _1 + \sum _{t=1}^T [ W_t^{-1} ] \Sigma _1\big ) \Big ) \\&\propto \mathcal {W}_n( \overline{\Psi }_1, \overline{\kappa }_1 ) \end{aligned}$$

where

$$\begin{aligned} \overline{\Psi }_1 = \big ( \underline{\Psi }_1 + \sum _{t=1}^T W_t^{-1} \big )^{-1}, \qquad \overline{\kappa }_1 = \underline{\kappa }_1 +T(\nu +n-1). \end{aligned}$$

Sampling \(\Sigma _2\). Given an inverse Wishart prior, the posterior full conditional distribution for \(\Sigma _2\) is conjugate. Using the properties of the Kronecker product and of the vectorization and trace operators, we obtain

$$\begin{aligned} P(\Sigma _2&| \textbf{Y},\textbf{x},B_1,B_2, \textbf{W},\alpha ,\delta ) \propto P(\Sigma _2) P(\textbf{Y},\textbf{W}|\textbf{x},B_1,B_2,\Sigma _2,\alpha ,\delta ) \\&\propto {\big |\Sigma _2\big |}^{-\frac{\underline{\kappa }_2+Tn +n+1}{2}} \exp \Big ( \!\!-\!\frac{1}{2} \big ( {{\,\textrm{tr}\,}}\big (\underline{\Psi }_2 \Sigma _2^{-1}\big ) + {{\,\textrm{tr}\,}}\big (\sum _{t=1}^T (Y_t-M_t)' W_t^{-1} (Y_t-M_t) \Sigma _2^{-1}\big ) \big ) \Big ) \\&\propto {\big |\Sigma _2\big |}^{-\frac{\underline{\kappa }_2+Tn +n+1}{2}} \exp \Big ( \!\!-\!\frac{1}{2} {{\,\textrm{tr}\,}}\big (\underline{\Psi }_2 \Sigma _2^{-1} + S_2 \Sigma _2^{-1}\big ) \Big ) \\&\propto \mathcal{I}\mathcal{W}_n(\overline{\Psi }_2, \overline{\kappa }_2) \end{aligned}$$

where we defined \(S_2 = \sum _{t=1}^T (Y_t-M_t)' W_t^{-1} (Y_t-M_t)\) and

$$\begin{aligned} \overline{\Psi }_2 = \underline{\Psi }_2 + S_2, \qquad \overline{\kappa }_2 = \underline{\kappa }_2 + T n. \end{aligned}$$

Sampling \(\nu \). Combining the prior distribution and the likelihood in Eqs. (19)–(21), one gets

$$\begin{aligned}&P(\nu | \textbf{Y},\textbf{x},B_1,B_2,\Sigma _1,\Sigma _2,\alpha ,\delta ) \propto P(\nu ) P(\textbf{Y} | \textbf{x},B_1,B_2,\Sigma _1,\Sigma _2,\nu ,\alpha ,\delta ) \\&\propto \nu ^{\underline{a}_\nu -1} e^{-\nu /\underline{b}_\nu } \prod _{t=1}^T \frac{\Gamma _n\big ( \frac{\nu +2n-1}{2} \big )}{\Gamma _n\big ( \frac{\nu +n-1}{2} \big )} \big | I_n + \Sigma _1^{-1}(Y_t-M_t)\Sigma _2^{-1}(Y_t-M_t)' \big |^{-\frac{\nu +2n-1}{2}} \mathbb {I}_{(2,+\infty )}(\nu ) \\&\propto \nu ^{\underline{a}_\nu -1} e^{-\nu /\underline{b}_\nu } \bigg [ \frac{\Gamma _n\big ( \frac{\nu +2n-1}{2} \big )}{\Gamma _n\big ( \frac{\nu +n-1}{2} \big )} \bigg ]^T \bigg [ \prod _{t=1}^T \big | I_n + \Sigma _1^{-1}(Y_t-M_t)\Sigma _2^{-1}(Y_t-M_t)' \big | \bigg ]^{-\frac{\nu +2n-1}{2}} \!\! \mathbb {I}_{(2,+\infty )}(\nu ) \\&\propto \mathcal{T}\mathcal{G}a(\overline{a}_\nu , \overline{b}_\nu ; 2,+\infty ) \bigg [ \frac{\Gamma _n\big ( \frac{\nu +2n-1}{2} \big )}{\Gamma _n\big ( \frac{\nu +n-1}{2} \big )} \bigg ]^T \end{aligned}$$

where

$$\begin{aligned} \overline{a}_\nu = \underline{a}_\nu \qquad \overline{b}_\nu = \Big [ \frac{1}{\underline{b}_\nu } +\frac{1}{2}\sum _{t=1}^T \log \Big ( \big | I_n + \Sigma _1^{-1}(Y_t-M_t)\Sigma _2^{-1}(Y_t-M_t)' \big | \Big ) \Big ]^{-1}. \end{aligned}$$

We sample from this distribution using an adaptive RWMH step with truncated lognormal proposal distribution [5, 6].

Sampling \(\alpha \) and \(\delta \). Combining the prior distribution and the likelihood in Eqs. (20)–(21) one gets

$$\begin{aligned} P(\alpha ,\delta&| \textbf{Y},\textbf{x},B_1,B_2,\textbf{W},\Sigma _2) \propto P(\alpha )P(\delta ) P(\textbf{Y} | \textbf{x},B_1,B_2,\textbf{W},\Sigma _2,\delta ,\alpha ) \\&\propto \alpha ^{\underline{a}_\alpha -1} \exp (-\alpha /\underline{b}_\alpha )\exp (-(\delta -\underline{\mu }_\delta )^2(2\underline{\sigma }_\delta ^2)^{-1}) \\&\quad \cdot \prod _{t=1}^T \exp \Big ( \!\!-\!\frac{1}{2} {\text {tr}}\big ( \Sigma _2^{-1} (Y_t-M_t)' W_t^{-1} (Y_t-M_t) \big ) \Big ) \\&\propto \alpha ^{\underline{a}_\alpha -1} \exp (-\alpha /\underline{b}_\alpha ) \exp (-(\delta -\underline{\mu }_\delta )^2(2\underline{\sigma }_\delta ^2)^{-1})\\&\quad \cdot \exp \Big ( \!\!-\!\frac{1}{2} \sum _{t=1}^T {\text {tr}}\big ( \Sigma _2^{-1} \big ( Y_t-B_1\phi (x_t; \alpha ,\delta )-B_2(1-\phi (x_t; \alpha ,\delta )) \big )'W_t^{-1} \\&\quad \cdot \big ( Y_t-B_1\phi (x_t; \alpha ,\delta )-B_2(1-\phi (x_t; \alpha ,\delta )) \big ) \big ) \Big ) \end{aligned}$$

We sample from this distribution using an adaptive RWMH step [5, 6, see] with lognormal proposal for the parameter \(\alpha \). Let \(\boldsymbol{\eta }=(\log \alpha , \delta )'\) the value of the MCMC chain the iteration \((j-1)\), the candidate is generated as follows:

$$\begin{aligned} \boldsymbol{\eta }^{*}=\boldsymbol{\eta }^{(j-1)}+\lambda ^{(j)}\hbox {Chol}(S^{(j-1)})\boldsymbol{\varepsilon }^{(j)}, \qquad \boldsymbol{\varepsilon }^{(j)}\sim \mathcal {N}(\textbf{0},I_2) \end{aligned}$$
(25)

and \(\boldsymbol{\eta }^{(j)}=\boldsymbol{\eta }^{*}\) with probability \(\rho ^{(j)}=\min (1,r^{(j)})\), where \(r^{(j)}=\) and \(\boldsymbol{\eta }^{(j)}=\boldsymbol{\eta }^{(j-1)}\) with probability \(1-\rho ^{(j)}\). The updating scheme for the adaptation parameters is as follows

$$\begin{aligned} \log \lambda ^{(j)}= & {} \log \lambda ^{(j-1)}+\gamma ^{(j)}(\rho ^{(j)}-\rho ^{*})\end{aligned}$$
(26)
$$\begin{aligned} \boldsymbol{\mu }^{(j)}= & {} \boldsymbol{\mu }^{(j-1)}+\gamma ^{(j)}(\boldsymbol{\eta }-\boldsymbol{\mu }^{(j)})\end{aligned}$$
(27)
$$\begin{aligned} \Upsilon ^{(j)}= & {} \Upsilon ^{(j-1)}+\gamma ^{(j)}((\boldsymbol{\eta }-\boldsymbol{\mu }^{(j)})(\boldsymbol{\eta }-\boldsymbol{\mu }^{(j)})'-\Upsilon ^{(j-1)}) \end{aligned}$$
(28)

where \(\gamma ^{(j)}=C/j^\kappa \) with \(\kappa =0.65\), and the target acceptance rate is \(\rho ^* = 0.30\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Billio, M., Casarin, R., Costola, M., Iacopini, M. (2022). Matrix-variate Smooth Transition Models for Temporal Networks. In: Bekker, A., Ferreira, J.T., Arashi, M., Chen, DG. (eds) Innovations in Multivariate Statistical Modeling. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-031-13971-0_7

Download citation

Publish with us

Policies and ethics