Skip to main content

Spatiotemporal Attention Constrained Deep Learning Framework for Dual-Tracer PET Imaging

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13413))

Included in the following conference series:

Abstract

Dual-tracer positron emission tomography (PET) imaging can provide the concentration distribution of two tracers in the body in a single scan, helping to better diagnose and understand diseases. However dual-tracer PET imaging separation is a challenging problem because of indistinguishable gamma photon pairs. In this work, we propose a two-dimensional convolutional network to separate the reconstructed mixed activity images, with the aid of channel attention modules to pay attention to both spatial and temporal information, which play an important role in the separation. Simulation experiments with different tracer pairs, scanning times, and phantoms are conducted to verify the generalization and robustness of the method to noise and individual differences. And its performance is also evaluated with real datasets. These results demonstrate the proposed method might have strong potential for the dual-tracer PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kadrmas, D.J., Hoffman, J.M.: Methodology for quantitative rapid multi-tracer pet tumor characterizations. Theranostics 3(10), 757 (2013)

    Article  Google Scholar 

  2. Huang, S., Carson, R., Hoffman, E., Kuhl, D., Phelps, M.: An investigation of a double-tracer technique for positron computerized tomography. J. Nucl. Med. 23(9), 816–822 (1982)

    Google Scholar 

  3. Koeppe, R.A., Raffel, D.M., Snyder, S.E., Ficaro, E.P., Kilbourn, M.R., Kuhl, D.E.: Dual-[11c] tracer single-acquisition positron emission tomography studies. J. Cereb. Blood Flow Metab. 21(12), 1480–1492 (2001)

    Article  Google Scholar 

  4. Kudomi, N., Hayashi, T., Teramoto, N., Watabe, H., Kawachi, N., Ohta, Y., Kim, K.M., Iida, H.: Rapid quantitative measurement of CMRO2 and CBF by dual administration of 15o-labeled oxygen and water during a single pet scan - a validation study and error analysis in anesthetized monkeys. J. Cereb. Blood Flow Metab. 25(9), 1209–1224 (2005)

    Article  Google Scholar 

  5. Ruan, D., Liu, H.: Separation of a mixture of simultaneous dual-tracer pet signals: a data-driven approach. IEEE Trans. Nucl. Sci. 64(9), 2588–2597 (2017)

    Article  Google Scholar 

  6. Xu, J., Liu, H.: Deep-learning-based separation of a mixture of dual-tracer single-acquisition pet signals with equal half-lives: a simulation study. IEEE Trans. Radiat. Plasma Med. Sci. 3(6), 649–659 (2019)

    Article  Google Scholar 

  7. Qing, M., Wan, Y., Huang, W., Xu, Y., Liu, H.: Separation of dual-tracer pet signals using a deep stacking network. Nucl. Instrum. Methods Phys. Res. Sect. A 1013, 165681 (2021)

    Article  Google Scholar 

  8. Tong, J., Wang, C., Liu, H.: Temporal information-guided dynamic dual-tracer pet signal separation network. Med. Phys. (2022)

    Google Scholar 

  9. Xu, J., Liu, H.: Three-dimensional convolutional neural networks for simultaneous dual-tracer pet imaging. Phys. Med. Biol. 64(18), 185016 (2019)

    Article  Google Scholar 

  10. Zeng, F., Liu, H.: Dual-tracer pet image direct reconstruction and separation based on three-dimensional encoder-decoder network. In: Optics in Health Care and Biomedical Optics X, vol. 11553, p. 115530X. International Society for Optics and Photonics (2020)

    Google Scholar 

  11. Wang, B., Liu, H.: FBP-net for direct reconstruction of dynamic pet images. Phys. Med. Biol. 65(23), 235008 (2020)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: 2003 The Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  15. Zubal, I.G., Harrell, C.R., Smith, E.O., Rattner, Z., Gindi, G., Hoffer, P.B.: Computerized three-dimensional segmented human anatomy. Med. Phys. 21(2), 299–302 (1994)

    Article  Google Scholar 

  16. Cheng, X., et al.: Direct parametric image reconstruction in reduced parameter space for rapid multi-tracer pet imaging. IEEE Trans. Med. Imaging 34(7), 1498–1512 (2015)

    Article  Google Scholar 

  17. Koeppe, R., Holthoff, V., Frey, K., Kilbourn, M., Kuhl, D.: Compartmental analysis of [11c] flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J. Cereb. Blood Flow Metab. 11(5), 735–744 (1991)

    Article  Google Scholar 

  18. Chen, S., Ho, C., Feng, D., Chi, Z.: Tracer kinetic modeling of/sup 11/c-acetate applied in the liver with positron emission tomography. IEEE Trans. Med. Imaging 23(4), 426–432 (2004)

    Article  Google Scholar 

  19. Terada, T., et al.: In vivo mitochondrial and glycolytic impairments in patients with Alzheimer disease. Neurology 94(15), e1592–e1604 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Talent Program of Zhejiang Province (2021R51004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lian, D., Li, Y., Liu, H. (2022). Spatiotemporal Attention Constrained Deep Learning Framework for Dual-Tracer PET Imaging. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics