Skip to main content

A Secure Communication Gateway with Parity Generator Implementation in QCA Platform

  • Conference paper
  • First Online:
Computational Intelligence in Communications and Business Analytics (CICBA 2022)

Abstract

Quantum-Dot Cellular Automata (QCA) has arisen as a potential option in contrast to CMOS in the late time of nanotechnology. Some appealing highlights of QCA incorporate incredibly low force utilization and dissemination, high gadget pressing thickness, high velocity (arranged by THz). QCA based plans of normal advanced modules were concentrated broadly in the ongoing past. Equality generator and equality checker circuits assume a significant part in blunder discovery and subsequently, go about as fundamental segments in correspondence circuits. In any case, not very many endeavors were made for an efficient plan of QCA based equality generator as well as equality checker circuits up until now. In addition, these current plans need functional feasibility as they bargain a ton with normally acknowledged plan measurements like territory, postponement, intricacy, and manufacture cost. This article depicts new plans of equality generator and equality checker circuits in QCA which beat every one of the current plans as far as previously mentioned measurements. The proposed plans can likewise be effortlessly reached out to deal with an enormous number of contributions with a straight expansion in territory and inactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Compano, R., Molenkamp, L., Paul, D.J.: Technology roadmap for nanoelectronics. In: European Commission IST Programme, Future and Emerging Technologies, pp. 1–104 (2000)

    Google Scholar 

  2. Lent, C.S., Tougaw, P.D., Porod, W., Bernestein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  3. Niemer, M.T., Kogge, P.M.: Problems in designing with QCAs: layout = timing. Int. J. Circuit Theory Appl. 29, 49–62 (2001)

    Article  Google Scholar 

  4. Bernstein, G.H., et al.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)

    Article  Google Scholar 

  5. Huang, J., Lombardi, F.: Design and Test of Digital Circuits by Quantum-dot Cellular Automata. Artech House Inc., Norwood (2007)

    Google Scholar 

  6. Lee, S., Cho, K., Choi, S., Kang, S.: A new logic topology-based scan chain stitching for test-power reduction. IEEE Trans. Circuits Syst. II 67(12), 1–5 (2020)

    Article  Google Scholar 

  7. Pomeranz, I.: Extended transparent-scan. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27(9), 2096–2104 (2019)

    Article  Google Scholar 

  8. Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7, 1546–1553 (2010)

    Article  Google Scholar 

  9. Karmakar, R., Chattopadhyay, S., Kapur, R.: A scan obfuscation guided design for-security approach for sequential circuits. IEEE Trans. Circuits Syst. II Express Briefs 67(3), 1–5 (2020)

    Google Scholar 

  10. Walus, K., Jullien, G.A., Dimitrov, V.S.: RAM design using quantum-dot cellular automata. Nanotechnol. Conf. Trade Show 2, 160–163 (2003)

    Google Scholar 

  11. Kanda, M., Hashizume, M., Ashikin Binti Ali, F., Yotsuyanagi, H., Lu, S.-K.: Open defect detection not utilizing boundary scan flip-flops in assembled circuit boards. IEEE Trans. Compon. Packag. Manuf. Technol. 10(5), 895–907 (2020)

    Article  Google Scholar 

  12. Mukherjee, N., et al.: Time and area optimized testing of automotive ICs. IEEE Trans. Very Large Scale Integr. VLSI Syst. 29(1), 1–13 (2021)

    Article  Google Scholar 

  13. Debnath, B., Das, J.C., De, D., Ghaemi, F., Ahmadian, A., Senu, N.: Reversible palm vein authenticator design with quantum dot cellular automata for information security in nanocommunication network. IEEE Access 8, 174821–174832 (2020)

    Google Scholar 

  14. Kim, J., Lee, S., Kang, S.: Test-friendly data-selectable self-gating (DSSG). IEEE Trans. Very Large Scale Integr. VLSI Syst. 27(8), 1972–1976 (2019)

    Article  Google Scholar 

  15. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  16. Mukhopadhyay, D., Dutta, P.: A study on energy optimized 4 dot 2 electron two dimensional quantum dot cellular automata logical reversible flip-flops. Microelectron. J. 46, 519–530 (2015)

    Article  Google Scholar 

  17. Kim, K., Ibtesam, M., Kim, D., Jung, J., Park, S.: CAN-based aging monitoring technique for automotive ASICs with efficient soft error resilience. IEEE Access 8, 22400–22410 (2020)

    Article  Google Scholar 

  18. Ottavi, M., Vankamamidi, V., Lombardi, F., Pontarelli, S.: Novel memory designs for QCA implementation. In: The fifth IEEE Conference on Nanotechnology, pp. 545–548 (2005)

    Google Scholar 

  19. Debnath, B., et al.: Security analysis with novel image masking based quantum-dot cellular automata information security model. IEEE Access 8, 1–4 (2020)

    Article  Google Scholar 

  20. Datta, K., Mukhopadhyay, D., Dutta, P.: Comprehensive study on the performance comparison of logically reversible and irreversible parity generator and checker designs using two-dimensional two-dot one-electron QCA. Microsyst. Technol. 25(5), 1659–1667 (2017). https://doi.org/10.1007/s00542-017-3445-2

    Article  Google Scholar 

  21. Datta, K., Mukhopadhyay, D., Dutta, P.: Comprehensive design and analysis of Gray code counters using 2-dimensional 2-dot 1-electron QCA. Microsyst. Technol. 28, 1–19 (2018). https://doi.org/10.1007/s00542-018-3818-1

    Article  Google Scholar 

  22. Ghosh, M., Mukhopadhyay, D., Dutta, P.: A novel parallel memory design using 2 dot 1 electron QCA. In: IEEE 2nd International Conference on Recent Trends in Information Systems, pp. 485–490 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debarka Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tapna, S., Chakrabarti, K., Mukhopadhyay, D. (2022). A Secure Communication Gateway with Parity Generator Implementation in QCA Platform. In: Mukhopadhyay, S., Sarkar, S., Dutta, P., Mandal, J.K., Roy, S. (eds) Computational Intelligence in Communications and Business Analytics. CICBA 2022. Communications in Computer and Information Science, vol 1579. Springer, Cham. https://doi.org/10.1007/978-3-031-10766-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10766-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10765-8

  • Online ISBN: 978-3-031-10766-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics