Skip to main content

Types of Microorganisms for Biodegradation

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Human activities are the leading contributors to global contamination. Approximately two billion tons of waste are produced each year. Waste accumulation represents an environmental challenge causing a serious problem in modern societies since it affects all life forms. Biodegradation is an effective and eco-friendly technique for waste recycling. Certain types of microorganisms play a key role in the ecosystem through waste transformation and the complete removal of contaminants. Enzymatic activities expressed by microorganisms play an important role in the biodegradation process by breaking down the waste material into safe environmental compounds. However, numerous factors can influence microbial biodegradation. This chapter will introduce different types of microbial biodegradation, their mechanisms in the degradation of different environmental pollutants, and the factors that may affect them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPS:

Extracellular polymeric matrix

HDPE:

High-density polyethylene

Lac:

Laccase

LDPE:

Low-density polyethylene

LiP:

Lignin peroxidase

MnP:

Manganese peroxidase

OPs:

Organophosphorus compounds

PAHs:

Polycyclic aromatic hydrocarbon

PAHs:

Polycyclic aromatic hydrocarbons

PE:

Polyethylene

PET:

Polyethylene terephthalate

PHB:

Polyhydroxy butyrate

PLA:

Polylactic acid

PP:

Polypropylene

PS:

Polystyrene

PU:

Polyurethane

PUR:

Polyurethane

PVA:

Polyvinyl alcohol

PVADH:

Polyvinyl alcohol dehydrogenase

PVC:

Polyvinyl chloride

SH:

Serine hydrolase

TPS:

Thermoplastic starch

VP:

Versatile peroxidase

References

  1. Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules, 23(9), 2313.

    Article  Google Scholar 

  2. Balabanova, L., Slepchenko, L., Son, O., & Tekutyeva, L. (2018). Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Frontiers in microbiology, 9, 1527.

    Article  Google Scholar 

  3. Ali, S. S., Mustafa, A. M., Kornaros, M., Manni, A., Sun, J., & Khalil, M. A. (2020). Construction of novel microbial consortia CS-5 and BC-4 valued for the degradation of catalpa sawdust and chlorophenols simultaneously with enhancing methane production. Bioresource technology, 301, 122720.

    Article  CAS  Google Scholar 

  4. Ghosh, S. K., Pal, S., & Ray, S. (2013). Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research, 20(7), 4339–4355.

    Article  CAS  Google Scholar 

  5. Sarkhel, R., Sengupta, S., Das, P., & Bhowal, A. (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. Journal of Polymer Research, 27(1), 1–8.

    Article  Google Scholar 

  6. Agrawal, P., & Singh, R. K. (2016). Breaking down of polyethylene by Pseudomonas species. International Journal of Scientific& Engineering Research, 7(3), 124–127.

    Google Scholar 

  7. Krueger, M. C., Harms, H., & Schlosser, D. (2015). Prospects for microbiological solutions to environmental pollution with plastics. Applied microbiology and biotechnology, 99(21), 8857–8874.

    Article  CAS  Google Scholar 

  8. Amobonye, A., Bhagwat, P., Singh, S., & Pillai, S. (2021). Plastic biodegradation: Frontline microbes and their enzymes. Science of The Total Environment, 759, 143536.

    Article  CAS  Google Scholar 

  9. Sokmen, T. ozgur, Sulukan, E., Turko lu, M., Baran, A., Ozkaraca, M., & Ceyhun, S. B. rahan. (2020). Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio). Neurotoxicology, 77, 51–59.

    Article  CAS  Google Scholar 

  10. Kim, H. R., Lee, H. M., Yu, H. C., Jeon, E., Lee, S., Li, J., & Kim, D.-H. (2020). Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus). Environmental science & technology, 54(11), 6987–6996.

    Article  CAS  Google Scholar 

  11. OIKAWA, E., Linn, K. T., ENDO, T., OIKAWA, T., & ISHIBASHI, Y. (2003). Isolation and characterization of polystyrene degrading microorganisms for zero emission treatment of expanded polystyrene. ENVIRONMENTAL ENGINEERING RESEARCH, 40, 373–379.

    Google Scholar 

  12. Krueger, M. C., Hofmann, U., Moeder, M., & Schlosser, D. (2015). Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry. PloS one, 10(7), e0131773.

    Article  Google Scholar 

  13. Sekhar, V. C., Nampoothiri, K. M., Mohan, A. J., Nair, N. R., Bhaskar, T., & Pandey, A. (2016). Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 318, 347–354.

    Article  CAS  Google Scholar 

  14. Mohan, A. J., Sekhar, V. C., Bhaskar, T., & Nampoothiri, K. M. (2016). Microbial assisted high impact polystyrene (HIPS) degradation. Bioresource technology, 213, 204–207.

    Article  CAS  Google Scholar 

  15. Sah, A., Negi, H., Kapri, A., Anwar, S., & Goel, R. (2011). Comparative shelf life and efficacy of LDPE and PVC degrading bacterial consortia under bioformulation. Ekologija, 57(2).

    Google Scholar 

  16. Leja, K., & Lewandowicz, G. yna. (2010). Polymer biodegradation and biodegradable polymers-a review. Polish Journal of Environmental Studies, 19(2).

    Google Scholar 

  17. Jeyakumar, D., Chirsteen, J., & Doble, M. (2013). Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresource technology, 148, 78–85.

    Article  CAS  Google Scholar 

  18. Jeon, H. J., & Kim, M. N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene. International Biodeterioration & Biodegradation, 115, 244–249.

    Article  CAS  Google Scholar 

  19. Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine pollution bulletin, 127, 15–21.

    Article  CAS  Google Scholar 

  20. Helen, A. S., Uche, E. C., & Hamid, F. S. (2017). Screening for polypropylene degradation potential of bacteria isolated from mangrove ecosystems in peninsular Malaysia. International Journal of Bioscience, Biochemistry and Bioinformatics, 7(4), 245–251.

    Article  CAS  Google Scholar 

  21. Sheik, S., Chandrashekar, K. R., Swaroop, K., & Somashekarappa, H. M. (2015). Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. International Biodeterioration & Biodegradation, 105, 21–29.

    Article  CAS  Google Scholar 

  22. Restrepo-Florez, J.-M., Bassi, A., & Thompson, M. R. (2014). Microbial degradation and deterioration of polyethylene-A review. International Biodeterioration & Biodegradation, 88, 83–90.

    Article  CAS  Google Scholar 

  23. Gnanavel, G., Valli, V., & Thirumarimurugan, M. (2012). A review of biodegradation of plastics waste. International journal of pharmaceutical and chemical sciences, 1(3), 670–673.

    Google Scholar 

  24. Arkatkar, A., Juwarkar, A. A., Bhaduri, S., Uppara, P. V., & Doble, M. (2010). Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. International Biodeterioration & Biodegradation, 64(6), 530–536.

    Article  CAS  Google Scholar 

  25. Saminathan, P., Sripriya, A., Nalini, K., Sivakumar, T., & Thangapandian, V. (2014). Biodegradation of plastics by Pseudomonas putida isolated from garden soil samples. J Adv Bot Zool, 1(3), 34–38.

    Google Scholar 

  26. Patil, R. C. (2018). Screening and characterization of plastic degrading bacteria from garbage soil. Br J Environ Sci, 6(4), 33–40.

    Google Scholar 

  27. Yang, J., Yang, Y., Wu, W.-M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental science & technology, 48(23), 13776–13784.

    Article  CAS  Google Scholar 

  28. Rajandas, H., Parimannan, S., Sathasivam, K., Ravichandran, M., & Yin, L. S. (2012). A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polymer Testing, 31(8), 1094–1099.

    Article  CAS  Google Scholar 

  29. Devi, R. S., Kannan, V. R., Nivas, D., Kannan, K., Chandru, S., & Antony, A. R. (2015). Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Marine pollution bulletin, 96(1–2), 32–40.

    Article  Google Scholar 

  30. Khalil, M. I., Ramadan, N. A., & Albarhawi, R. K. (2013). Biodegradation of polymers by fungi isolated from plastic garbage and the optimum condition assessment of growth. Journal of Environmental Management, 1, 33–43.

    Google Scholar 

  31. Sivan, A. (2011). New perspectives in plastic biodegradation. Current opinion in biotechnology, 22(3), 422–426.

    Article  CAS  Google Scholar 

  32. Santo, M., Weitsman, R., & Sivan, A. (2013). The role of the copper-binding enzyme-laccase-in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation, 84, 204–210.

    Article  CAS  Google Scholar 

  33. Sen, S. K., & Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3(1), 462–473.

    Article  Google Scholar 

  34. Ghatge, S., Yang, Y., Ahn, J.-H., & Hur, H.-G. (2020). Biodegradation of polyethylene: a brief review. Applied Biological Chemistry, 63(1), 1–14.

    Article  Google Scholar 

  35. Muhonja, C. N., Makonde, H., Magoma, G., & Imbuga, M. (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PloS one, 13(7), e0198446.

    Article  Google Scholar 

  36. Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of applied microbiology, 98(5), 1093–1100.

    Article  CAS  Google Scholar 

  37. Tribedi, P., & Sil, A. K. (2013). Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environmental Science and Pollution Research, 20(6), 4146–4153.

    Article  CAS  Google Scholar 

  38. Shrestha, J. K., Joshi, D. R., Regmi, P., & Badahit, G. (2019). Isolation and Identification of Low Density Polyethylene (LDPE) Degrading Bacillus spp. from a Soil of Landfill Site. Acta scientific microbiology, 2(4), 30–34.

    Google Scholar 

  39. Suman, M., & Shamba, C. (2014). A comparative study of commercially available plastic carry bag biodegradation by microorganisms isolated from hydrocarbon effluent enriched soil. International Journal of Current Microbiology and Applied Sciences, 3(5), 318–325.

    Google Scholar 

  40. Riandi, M. I., Kawuri, R., & Sudirga, S. K. (2017). Potential of Pseudomonas sp. and Ochrobacterum sp. Isolated from Various Soil Sample as Degrading Bacteria of High Density Polyethylene (HDPE) and Low Density Polyethylene (LDPE) Plastic. SIMBIOSIS Journal of Biological Science, 5(2), 58–63.

    Article  Google Scholar 

  41. Jamil, S. U. U., Zada, S., Khan, I., Sajjad, W., Rafiq, M., Shah, A. A., & Hasan, F. (2017). Biodegradation of polyethylene by bacterial strains isolated from Kashmir cave, Buner, Pakistan. Journal of Cave and Karst Studies, 79(1), 73–80.

    Article  CAS  Google Scholar 

  42. Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S., & Wattiez, R. (2019). The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. Journal of hazardous materials, 380, 120899.

    Article  CAS  Google Scholar 

  43. Zahra, S., Abbas, S. S., Mahsa, M.-T., & Mohsen, N. (2010). Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste management, 30(3), 396–401.

    Article  CAS  Google Scholar 

  44. Raaman, N., Rajitha, N., Jayshree, A., & Jegadeesh, R. (2012). Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Indus Res, 1(6), 313–316.

    Google Scholar 

  45. Ameen, F., Moslem, M., Hadi, S., & Al-Sabri, A. E. (2015). Biodegradation of Low Density Polyethylene (LDPE) by Mangrove fungi from the red sea coast. Progress in Rubber Plastics and Recycling Technology, 31(2), 125–143.

    Article  Google Scholar 

  46. Balasubramanian, V., Natarajan, K., Hemambika, B., Ramesh, N., Sumathi, C. S., Kottaimuthu, R., & Rajesh Kannan, V. (2010). High density polyethylene (HDPE) degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Letters in applied microbiology, 51(2), 205–211.

    CAS  Google Scholar 

  47. Awasthi, S., Srivastava, P., Singh, P., Tiwary, D., & Mishra, P. K. (2017). Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech, 7(5), 1–10.

    Article  Google Scholar 

  48. Kim, M. Y., Kim, C., Moon, J., Heo, J., Jung, S. P., & Kim, J. R. (2017). Polymer film-based screening and isolation of polylactic acid (PLA)-degrading microorganisms. Journal of microbiology and biotechnology, 27(2), 342–349.

    Article  CAS  Google Scholar 

  49. Sekiguchi, T., Sato, T., Enoki, M., Kanehiro, H., Uematsu, K., & Kato, C. (2011). Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Report of Research and Development, 11, 33–41.

    Article  Google Scholar 

  50. Sang, T., Wallis, C. J., Hill, G., & Britovsek, G. J. P. (2020). Polyethylene terephthalate degradation under natural and accelerated weathering conditions. European polymer journal, 136, 109873.

    Article  CAS  Google Scholar 

  51. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., … Oda, K. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196–1199.

    Article  CAS  Google Scholar 

  52. Asmita, K., Shubhamsingh, T., & Tejashree, S. (2015). Isolation of plastic degrading micro-organisms from soil samples collected at various locations in Mumbai, India. International Research Journal of Environment Sciences, 4(3), 77–85.

    CAS  Google Scholar 

  53. Aly, M. M., Tork, S., Qari, H. A., & Al-Seeni, M. N. (2015). Poly-A3/4-hydroxy butyrate Depolymerase from Streptomyces lydicus MM10, Isolated from Wastewater Sample. International Journal of Agriculture and Biology, 17(5).

    Google Scholar 

  54. Aburas, M. M. A. (2016). Degradation of poly (3-hydroxybuthyrate) using Aspergillus oryzae obtained from uncultivated soil. Life Sci J, 13(3), 51–56.

    CAS  Google Scholar 

  55. Kim, D. Y., & Rhee, Y. H. (2003). Biodegradation of microbial and synthetic polyesters by fungi. Applied microbiology and biotechnology, 61(4), 300–308.

    Article  CAS  Google Scholar 

  56. Gu, J.-D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International biodeterioration & biodegradation, 52(2), 69–91.

    Article  CAS  Google Scholar 

  57. Asina, F., Brzonova, I., Voeller, K., Kozliak, E., Kubatova, A., Yao, B., & Ji, Y. (2016). Biodegradation of lignin by fungi, bacteria and laccases. Bioresource technology, 220, 414–424.

    Article  CAS  Google Scholar 

  58. Chai, L., Chen, Y., Tang, C., Yang, Z., Zheng, Y., & Shi, Y. (2014). Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Applied microbiology and biotechnology, 98(4), 1907–1912.

    Article  CAS  Google Scholar 

  59. Chandra, R., Raj, A., Purohit, H. J., & Kapley, A. (2007). Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere, 67(4), 839–846.

    Article  CAS  Google Scholar 

  60. Luz, J. M. R. da, Nunes, M. D., Paes, S. A., Torres, D. P., Silva, M. de C. S. da, & Kasuya, M. C. M. (2012). Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. Brazilian Journal of Microbiology, 43(4), 1508–1515.

    Article  Google Scholar 

  61. McCULLOUGH, Re. B. (2004). Biotechnology and the Forest Products Industry. The Bioengineered Forest: Challenges for Science and Society, 12.

    Google Scholar 

  62. Warren, R. A. J. (1996). Microbial hydrolysis of polysaccharides. Annual review of microbiology, 50(1), 183–212.

    Article  CAS  Google Scholar 

  63. Accinelli, C., Sacca, M. L., Mencarelli, M., & Vicari, A. (2012). Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere, 89(2), 136–143.

    Article  CAS  Google Scholar 

  64. Jayasekara, R., Harding, I., Bowater, I., & Lonergan, G. (2005). Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. Journal of Polymers and the Environment, 13(3), 231–251.

    Article  CAS  Google Scholar 

  65. Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International journal of molecular sciences, 10(9), 3722–3742.

    Article  CAS  Google Scholar 

  66. Perez, J., Munoz-Dorado, J., De la Rubia, T., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International microbiology, 5(2), 53–63.

    Article  CAS  Google Scholar 

  67. Navarro, D., Rosso, M.-N., Haon, M., Olive, C., Bonnin, E., Lesage-Meessen, L., … Berrin, J.-G. (2014). Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. Biotechnology for biofuels, 7(1), 1–14.

    Article  Google Scholar 

  68. Warshawsky, D., Cody, T., Radike, M., Reilman, R., Schumann, B., LaDow, K., & Schneider, J. (1995). Biotransformation of benzo [a] pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chemico-biological interactions, 97(2), 131–148.

    Article  CAS  Google Scholar 

  69. Kirstein, I. V., Wichels, A., Gullans, E., Krohne, G., & Gerdts, G. (2019). The plastisphere-uncovering tightly attached plastic “specific” microorganisms. PLoS One, 14(4), e0215859.

    Article  CAS  Google Scholar 

  70. Skariyachan, S., Patil, A. A., Shankar, A., Manjunath, M., Bachappanavar, N., & Kiran, S. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation and Stability, 149, 52–68.

    Article  CAS  Google Scholar 

  71. Jabeen, H., Iqbal, S., Anwar, S., & Parales, R. E. (2015). Optimization of profenofos degradation by a novel bacterial consortium PBAC using response surface methodology. International Biodeterioration & Biodegradation, 100, 89–97.

    Article  CAS  Google Scholar 

  72. Soulas, G., & Lagacherie, B. (2001). Modelling of microbial degradation of pesticides in soils. Biology and fertility of Soils, 33(6), 551–557.

    Article  CAS  Google Scholar 

  73. Sanyal, P., Samaddar, P., & Paul, A. K. (2006). Degradation of Poly (3-hydroxybutyrate) and Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Some Soil Aspergillus spp. Journal of Polymers and the Environment, 14(3), 257–263.

    Article  CAS  Google Scholar 

  74. Valentin, L., Lu-Chau, T. A., Lopez, C., Feijoo, G., Moreira, M. T., & Lema, J. M. (2007). Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochemistry, 42(4), 641–648.

    Article  CAS  Google Scholar 

  75. Jove, P., Olivella, M., Camarero, S., Caixach, J., Planas, C., Cano, L., & De Las Heras, F. X. (2016). Fungal biodegradation of anthracene-polluted cork: a comparative study. Journal of Environmental Science and Health, Part A, 51(1), 70–77.

    Article  CAS  Google Scholar 

  76. Zafra, G., Moreno-Montano, A., Absalon, angel E., & Cortes-Espinosa, D. V. (2015). Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environmental Science and Pollution Research, 22(2), 1034–1042.

    Article  CAS  Google Scholar 

  77. Lee, H., Jang, Y., Choi, Y.-S., Kim, M.-J., Lee, J., Lee, H., … Kim, J.-J. (2014). Biotechnological procedures to select white rot fungi for the degradation of PAHs. Journal of Microbiological Methods, 97, 56–62.

    Article  CAS  Google Scholar 

  78. Mineki, S., Suzuki, K., Iwata, K., Nakajima, D., & Goto, S. (2015). Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycyclic Aromatic Compounds, 35(1), 120–128.

    Article  CAS  Google Scholar 

  79. Wang, C., Sun, H., Li, J., Li, Y., & Zhang, Q. (2009). Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere, 77(6), 733–738.

    Article  CAS  Google Scholar 

  80. Pinedo-Rivilla, C., Aleu, J., & Collado, I. G. (2009). Pollutants biodegradation by fungi. Current organic chemistry, 13(12), 1194–1214.

    Article  CAS  Google Scholar 

  81. Jaacks, L. M., & Staimez, L. R. (2015). Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: A systematic review. Environment international, 76, 57–70.

    Article  CAS  Google Scholar 

  82. Ganash, M. A., Abdel Ghany, T. M., & Reyad, A. M. (2016). Pleurotus ostreatus as a biodegradator for organophosphorus insecticide malathion. J Environ Anal Toxicol, 6(3), 1–6.

    Google Scholar 

  83. Weissenbach, J. (2019). Exploring biochemical diversity in bacteria. Anais da Academia Brasileira de Ciencias, 91.

    Google Scholar 

  84. Albers, P., Weytjens, B., De Mot, R., Marchal, K., & Springael, D. (2018). Molecular processes underlying synergistic linuron mineralization in a triple species bacterial consortium biofilm revealed by differential transcriptomics. Microbiologyopen, 7(2), e00559.

    Article  Google Scholar 

  85. Verma, J. P., Jaiswal, D. K., & Sagar, R. (2014). Pesticide relevance and their microbial degradation: a-state-of-art. Reviews in Environmental Science and Bio/Technology, 13(4), 429–466.

    Article  Google Scholar 

  86. Chen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., … Zhang, L.-H. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific reports, 5(1), 1–10.

    Google Scholar 

  87. Luo, X., Zhang, D., Zhou, X., Du, J., Zhang, S., & Liu, Y. (2018). Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S. Scientific reports, 8(1), 1–8.

    Google Scholar 

  88. Muthu, S. S. (2014). Roadmap to sustainable textiles and clothing: environmental and social aspects of textiles and clothing supply chain. Springer.

    Book  Google Scholar 

  89. Helbling, C., Abanilla, M., Lee, L., & Karbhari, V. M. (2006). Issues of variability and durability under synergistic exposure conditions related to advanced polymer composites in the civil infrastructure. Composites Part A: Applied Science and Manufacturing, 37(8), 1102–1110.

    Article  Google Scholar 

  90. Sharma, B., Rawat, H., & Pooja, S. R. (2017). Bioremediation-A Progressive Approach toward Reducing Plastic Wastes. International Journal of Current Microbiology adn Applied Science, 6(12), 1116–1131.

    Article  Google Scholar 

  91. Degli-Innocenti, F. (2014). Biodegradation of plastics and ecotoxicity testing: when should it be done. Frontiers in microbiology, 5, 475.

    Article  Google Scholar 

  92. Tiwari, A. K., Gautam, M., & Maurya, H. K. (2018). Recent development of biodegradation techniques of polymer. International Journal of Research-GRANTHAALAYAH, 6(6), 414–452.

    Article  Google Scholar 

  93. Van Eerd, L. L., Hoagland, R. E., Zablotowicz, R. M., & Hall, J. C. (2003). Pesticide metabolism in plants and microorganisms. Weed science, 51(4), 472–495.

    Article  Google Scholar 

  94. Nguyen, N. K., Dorfler, U., Welzl, G., Munch, J. C., Schroll, R., & Suhadolc, M. (2018). Large variation in glyphosate mineralization in 21 different agricultural soils explained by soil properties. Science of the total environment, 627, 544–552.

    Article  CAS  Google Scholar 

  95. Guan, N., & Liu, L. (2020). Microbial response to acid stress: mechanisms and applications. Applied microbiology and biotechnology, 104(1), 51–65.

    Article  CAS  Google Scholar 

  96. Ganesh, P., Dineshraj, D., & Yoganathan, K. (2017). Production and screening of depolymerising enymes by potential bacteria and fungi isolated from plastic waste dump yard sites. Int J Appl Res, 3, 693–695.

    Google Scholar 

  97. Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of Applied Microbiology, 123(3), 582–593.

    Article  CAS  Google Scholar 

  98. Desai, S. S., & Nityanand, C. (2011). Microbial laccases and their applications: a review. Asian Journal of Biotechnology, 3(2), 98–124.

    Article  CAS  Google Scholar 

  99. Zhao, Z., Liu, H., Wang, C., & Xu, J.-R. (2013). Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 14(1), 1–15.

    Article  Google Scholar 

  100. Aro, N., Pakula, T., & Penttila, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 29(4), 719–739.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaimaa A. Khalid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khalid, S.A., Elsherif, W.M. (2023). Types of Microorganisms for Biodegradation. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_2

Download citation

Publish with us

Policies and ethics