Skip to main content

Finding the Time-Dependent Virus Transmission Intensity via Gradient Method and Adjoint Sensitivity Analysis

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2022)

Abstract

In this work we propose a method for numerical finding of a function representing the time-dependent virus transmission intensity coefficient in the exemplary SEIR model of infectious disease. Our method is based on gradient minimization of a predefined functional and uses a gradient obtained from adjoint sensitivity analysis. To apply this method to the exemplary SEIR model we used publicly available infection data concerning the COVID-19 cumulative cases in Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dashtbali, M., Mirzaie, M.: A compartmental model that predicts the effect of social distancing and vaccination on controlling COVID-19. Sci. Rep. 11(1) (2021). https://doi.org/10.1038/s41598-021-86873-0

  2. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20(5), 533–534 (2020). https://doi.org/10.1016/S1473-3099(20)30120-1

    Article  Google Scholar 

  3. Engbert, R., Rabe, M.M., Kliegl, R., Reich, S.: Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics. Bull. Math. Biol. 83(1) (2020). https://doi.org/10.1007/s11538-020-00834-8

  4. Fujarewicz, K., Galuszka, A.: Generalized backpropagation through time for continuous time neural networks and discrete time measurements. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 190–196. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_24

    Chapter  MATH  Google Scholar 

  5. Fujarewicz, K., Kimmel, M., Świerniak, A.: On fitting of mathematical models of cell signaling pathways using adjoint systems. Mathe. Bioscie. Eng. 2(3), 527 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fujarewicz, K., Łakomiec, K.: Parameter estimation of systems with delays via structural sensitivity analysis. Discr. Continuous Dyn. Syst. 19(8), 2521–2533 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Fujarewicz, K., Łakomiec, K.: Spatiotemporal sensitivity of systems modeled by cellular automata. Math. Meth. Appl. Sci. 41(18), 8897–8905 (2018). https://doi.org/10.1002/mma.5358, https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5358

  8. Fujarewicz, K., Łakomiec, K.: Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization. Mathem. Biosci. Eng. 13(6), 1131–1142 (2016)

    Article  MathSciNet  Google Scholar 

  9. Ghostine, R., Gharamti, M., Hassrouny, S., Hoteit, I.: An extended SEIR model with vaccination for forecasting the COVID-19 pandemic in Saudi Arabia using an ensemble kalman filter. Math. 9(6) (2021). https://doi.org/10.3390/math9060636, https://www.mdpi.com/2227-7390/9/6/636

  10. Giordano, G., et al.: Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 26(6), 855–860 (2020). https://doi.org/10.1038/s41591-020-0883-7

  11. He, S., Peng, Y., Sun, K.: SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dyn. 101(3), 1667–1680 (2020). https://doi.org/10.1007/s11071-020-05743-y

  12. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000). https://doi.org/10.1137/S0036144500371907

    Article  MathSciNet  MATH  Google Scholar 

  13. Łakomiec, K., Kumala, S., Hancock, R., Rzeszowska-Wolny, J., Fujarewicz, K.: Modeling the repair of DNA strand breaks caused by \(\gamma \)-radiation in a minichromosome. Phys. Biol. 11(4), 003–045 (2014). https://doi.org/10.1088/1478-3975/11/4/045003

  14. Lauer, S.A., et al.: The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Inter. Med. 172(9), 577–582 (2020). https://doi.org/10.7326/M20-0504. PMID: 32150748

  15. Leontitsis, et al.: A specialized compartmental model for COVID-19. Int. J. Environ. Res. Public Health 18(5) (2021). https://doi.org/10.3390/ijerph18052667, https://www.mdpi.com/1660-4601/18/5/2667

  16. López, L., Rodó, X.: A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: simulating control scenarios and multi-scale epidemics. Results Phys. 21, 103–746 (2021). https://doi.org/10.1016/j.rinp.2020.103746. https://www.sciencedirect.com/science/article/pii/S2211379720321604

  17. Ramezani, S.B., Amirlatifi, A., Rahimi, S.: A novel compartmental model to capture the nonlinear trend of COVID-19. Comput. Biol. Med. 134, 104–421 (2021). https://doi.org/10.1016/j.compbiomed.2021.104421. URL https://www.sciencedirect.com/science/article/pii/S0010482521002158

Download references

Acknowledgement

This work was supported by the Polish National Science Centre under grant number UMO-2020/37/B/ST6/01959 and by the Silesian University of Technology under statutory research funds. Calculations were performed on the Ziemowit computer cluster in the Laboratory of Bioinformatics and Computational Biology, created in the EU Innovative Economy Programme POIG.02.01.00-00-166/08 and expanded in the POIG.02.03.01-00-040/13 project. Data analysis was partially carried out using the Biotest Platform developed within Project n. PBS3/B3/32/2015 financed by the Polish National Centre of Research and Development (NCBiR). This work was carried out in part by the Silesian University of Technology internal research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Łakomiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łakomiec, K., Wilk, A., Psiuk-Maksymowicz, K., Fujarewicz, K. (2022). Finding the Time-Dependent Virus Transmission Intensity via Gradient Method and Adjoint Sensitivity Analysis. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2022. Advances in Intelligent Systems and Computing, vol 1429. Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_41

Download citation

Publish with us

Policies and ethics