Skip to main content

Convergence of Metropolis-Hastings Algorithm with Optimal Mixing Parameter in Bipartite Regular Graphs

  • Conference paper
  • First Online:
Software Engineering Perspectives in Systems (CSOC 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 501))

Included in the following conference series:

Abstract

The Metropolis-Hastings algorithm, a multi-functional iterative procedure applicable in various technical/non-technical industries, has been attracting great attention of the scientific community since its definition. In this paper, we address the generalized Metropolis-Hastings algorithm for distributed averaging in bipartite regular graphs, where this algorithm with the optimal mixing parameter diverges. We identify that the convergence of the algorithm in bipartite regular graphs is achieved (in spite of the initial divergence), provided that a distributed mechanism for ensuring the convergence of the average consensus algorithm with the Maximum-degree weights in this mentioned critical graph topology is applied. Moreover, we examine in the paper how to reconfigure the algorithm the most efficiently after detecting a bipartite regular topology in a distributed way. The experimental part is concerned with the convergence rate of bounded Metropolis-Hastings algorithm with the optimal mixing parameter in bipartite regular graphs of various degrees when the mentioned mechanism with different rounding accuracy is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    determined by the vertex set V (v\(_i\) is the label of a vertex) and the edge set E (e\(_{ij}\) is the label of an edge linking v\(_i\) and v\(_j\)).

  2. 2.

    Definition of bipartite graphs.

  3. 3.

    Definition of regular graphs.

References

  1. Lez-Briones, A.G., De La Prieta, F., Mohamad, M.S., Omatu, S., Corchado, J.M.: Multi-agent systems applications in energy optimization problems: a state-of-the-art review. Energies 11, 1928 (2018). https://doi.org/10.3390/en11081928

  2. Dominguez, R., Cannella, S.: Insights on multi-agent systems applications for supply chain management. Sustainability 12, 1935 (2020). https://doi.org/10.3390/su12051935

  3. Liang, C., et al.: Intrusion detection system for the internet of things based on blockchain and multi-agent systems. Electronics 9, 1120 (2020). https://doi.org/10.3390/electronics9071120

  4. Pokorny, J., Seda, P., Seda, M., Hosek, J.: Modeling optimal location distribution for deployment of flying base stations as on-demand connectivity enablers in real-world scenarios. Sensors 21, 5580 (2021). https://doi.org/10.3390/s21165580

  5. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018). https://doi.org/10.1109/ACCESS.2018.2831228

    Article  Google Scholar 

  6. Dong, Y., Lin, Z.: An event-triggered observer and its applications in cooperative control of multi-agent systems. IEEE Trans. Automat. Contr. (2021). https://doi.org/10.1109/TAC.2021.3105322

    Article  Google Scholar 

  7. Kenyeres, M., Kenyeres, J.: Comparative study of distributed consensus gossip algorithms for network size estimation in multi-agent systems. Future Internet 13, 134 (2021). https://doi.org/10.3390/fi13050134

  8. Peng, Z., et al.: A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning. Appl. Math. Comput. 369, 124821 (2020). https://doi.org/10.1016/j.amc.2019.124821

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiore, D., Russo, G.: Resilient consensus for multi-agent systems subject to differential privacy requirements. Automatica (Oxf.) 106, 18–26 (2019). https://doi.org/10.1016/j.automatica.2019.04.029

    Article  MathSciNet  MATH  Google Scholar 

  10. Guedes, G.T.A.: MASRML-a domain-specific modeling language for multi-agent systems requirements. Int. J. Softw. Eng. Appl. 11, 25–45 (2020). https://doi.org/10.5121/ijsea.2020.11503

    Article  Google Scholar 

  11. Törsleff, S., Hildebrandt, C., Fay, A.: Development of ontologies for reasoning and communication in multi-agent systems. In: 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pp. 450–457. Springer Publishing, New York (2019). https://doi.org/10.5220/0008355804500457

  12. Khan, M.W., Wang, J., Ma, M., Xiong, L., Li, P., Wu, F.: Optimal energy management and control aspects of distributed microgrid using multi-agent systems. Sustain. Cities Soc. 44, 855–870 (2019). https://doi.org/10.1016/j.scs.2018.11.009

    Article  Google Scholar 

  13. Nair, A.S., Hossen, T., Campion, M., Selvaraj, D.F., Goveas, N., Kaabouch, N., Ranganathan, P.: Multi-agent systems for resource allocation and scheduling in a smart grid. Technol. Econ.Smart Grids Sust. Energy 3(1), 1–15 (2018). https://doi.org/10.1007/s40866-018-0052-y

    Article  Google Scholar 

  14. Tianfield, H., Unland, R.: Towards self-organization in multi-agent systems and grid computing. Multiagent Grid Syst. 1, 89–95 (2005). https://doi.org/10.3233/MGS-2005-1203

    Article  MATH  Google Scholar 

  15. Seda, M., Seda, P.: Computational geometry data structures in logistics and navigation tasks. In: 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, (ICUMT 2020), pp. 179–184. IEEE Press, New York (2020). https://doi.org/10.1109/ICUMT51630.2020.9222453

  16. Cil, I., Mala, M.: A multi-agent architecture for modelling and simulation of small military unit combat in asymmetric warfare. Expert Syst. Appl. 37, 1331–1343 (2010). https://doi.org/10.1016/j.eswa.2009.06.024

    Article  Google Scholar 

  17. Villarrubia, G., De Paz, J.F., De La Iglesia, D.H., Bajo, J.: Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors 17, 1775 (2017). https://doi.org/10.3390/s17081775

  18. Kenyeres, M., Kenyeres, J.: Average consensus over mobile wireless sensor networks: weight matrix guaranteeing convergence without reconfiguration of edge weights. Sensors 20, 3677 (2020). https://doi.org/10.3390/s20133677

    Article  Google Scholar 

  19. Zou, Y., Zuo, Z., Xia, K.: Sampled-data distributed protocol for coordinated aggregation of multi-agent systems subject to communication delays. Nonlinear Anal. Hybri. 43, 101108 (2021). https://doi.org/10.1016/j.nahs.2021.101108

  20. Sabo, R., Krammer, P., Mojzis, J., Kvassay, M.: Identification of spontaneous spoken texts in slovak. Jazykoved. čas. 70, 481–490 (2019). https://doi.org/10.2478/jazcas-2019-0076

    Article  Google Scholar 

  21. Sutagundar, A.V., Manvi, S.S.: Fish bone structure based data aggregation and routing in wireless sensor network: multi-agent based approach. Telecommun. Syst. 56(4), 493–508 (2013). https://doi.org/10.1007/s11235-013-9769-z

    Article  Google Scholar 

  22. Mojzis, J., Balogh, S.: Breaking microsoft azure information protection viewer using memory dump. Adv. Intell. Syst. Comput. 1294, 913–920 (2020). https://doi.org/10.1007/978-3-030-63322-6_78

    Article  Google Scholar 

  23. Ullah, A., Azeem, M., Ashraf, H., Alaboudi, A.A., Humayun, M., Jhanjhi, N.Z.: Secure healthcare data aggregation and transmission in IoT - a survey. IEEE Access 9, 16849–16865 (2021). https://doi.org/10.1109/ACCESS.2021.3052850

    Article  Google Scholar 

  24. Pourghebleh, B., Navimipour, N.J.: Data aggregation mechanisms in the Internet of things: a systematic review of the literature and recommendations for future research. J. Netw. Comput. Appl. 97, 23–34 (2017). https://doi.org/10.1016/j.jnca.2017.08.006

    Article  Google Scholar 

  25. He, J., Cai, L., Cheng, P., Pan, J., Shi, L.: Consensus-based data-privacy preserving data aggregation. IEEE Trans. Automat. Contr. 64, 5222–5229 (2019). https://doi.org/10.1109/TAC.2019.2910171

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, J., Liu, F.: A byzantine sensing network based on majority-consensus data aggregation mechanism. Sensors 21, 248 (2021). https://doi.org/10.3390/s21010248

    Article  Google Scholar 

  27. He, J., Cai, L., Cheng, P., Pan, J., Shi, L.: Distributed privacy-preserving data aggregation against dishonest nodes in network systems. IEEE Internet Things J. 6, 1462–1470 (2021). https://doi.org/10.1109/JIOT.2018.2834544

    Article  Google Scholar 

  28. Wang, Y.C., Chen, T.C.T.: A partial-consensus posterior-aggregation FAHP method-supplier selection problem as an example. Mathematics 7, 179 (2021). https://doi.org/10.3390/math7020179

  29. Abdulghafor, R., Abdullah, S.S., Turaev, S., Othman, M.: An overview of the consensus problem in the control of multi-agent systems. Automatika 59, 143–157 (2018). https://doi.org/10.1080/00051144.2018.1492688

    Article  Google Scholar 

  30. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007). https://doi.org/10.1109/JPROC.2006.887293

    Article  MATH  Google Scholar 

  31. Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control. Lett. 59, 209–217 (2010). https://doi.org/10.1016/j.sysconle.2010.01.006

    Article  MathSciNet  MATH  Google Scholar 

  32. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970). https://doi.org/10.1093/biomet/57.1.97

    Article  MathSciNet  MATH  Google Scholar 

  33. Schwarz, V., Hannak, G., Matz, G.: On the convergence of average consensus with generalized metropolis-hasting weights. In: 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 2014), pp. 5442–5446. IEEE Press, New York (2019). https://doi.org/10.1109/ICASSP.2014.6854643

  34. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49, 327–335 (1995). https://doi.org/10.1080/00031305.1995.10476177

    Article  Google Scholar 

  35. El Chammie, M., Açıkmeşe, B.: Safe Metropolis-Hastings algorithm and its application to swarm control. Syst. Control. Lett. 111, 40–48 (2018). https://doi.org/10.1016/j.sysconle.2017.10.006

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, P., Xu, R.X.: Metropolis-hastings adaptive algorithm and its application. Syst. Eng. 1, 100–108 (2008)

    Google Scholar 

  37. Kenyeres, M., Kenyeres, J.: Distributed mechanism for detecting average consensus with maximum-degree weights in bipartite regular graphs. Mathematics 9, 3020 (2021). https://doi.org/10.3390/math9233020

    Article  Google Scholar 

  38. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control. Lett. 53, 65–78 (2004). https://doi.org/10.1016/j.sysconle.2004.02.022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the VEGA agency under the contract No. 2/0155/19 and by the project Cyber-Physical System for smart tele-monitoring and tele-medicine for patients with COVID-19 (BAS-SAS-21-03). Since 2019, Martin Kenyeres has been a holder of the Stefan Schwarz Supporting Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kenyeres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kenyeres, M., Kenyeres, J. (2022). Convergence of Metropolis-Hastings Algorithm with Optimal Mixing Parameter in Bipartite Regular Graphs. In: Silhavy, R. (eds) Software Engineering Perspectives in Systems. CSOC 2022. Lecture Notes in Networks and Systems, vol 501. Springer, Cham. https://doi.org/10.1007/978-3-031-09070-7_40

Download citation

Publish with us

Policies and ethics