Skip to main content

Improving Semantic Segmentation with Graph-Based Structural Knowledge

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

Deep learning based pipelines for semantic segmentation often ignore structural information available on annotated images used for training. We propose a novel post-processing module enforcing structural knowledge about the objects of interest to improve segmentation results provided by deep learning. This module corresponds to a “many-to-one-or-none” inexact graph matching approach, and is formulated as a quadratic assignment problem. Using two standard measures for evaluation, we show experimentally that our pipeline for segmentation of 3D MRI data of the brain outperforms the baseline CNN (U-Net) used alone. In addition, our approach is shown to be resilient to small training datasets that often limit the performance of deep learning.

This research was conducted in the framework of the regional program Atlanstic 2020, Research, Education and Innovation in Pays de la Loire, supported by the French Region Pays de la Loire and the European Regional Development Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The open-source code and data are to be shared with the community https://github.com/Jeremy-Chopin/APACoSI/.

  2. 2.

    The IBSR annotated public dataset can be downloaded at the following address: https://www.nitrc.org/projects/ibsr.

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  2. Bloch, I.: Fuzzy sets for image processing and understanding. Fuzzy Sets Syst. 281, 280–291 (2015). https://doi.org/10.1016/j.fss.2015.06.017

    Article  MATH  Google Scholar 

  3. Chopin, J., Fasquel, J.B., Mouchère, H., Dahyot, R., Bloch, I.: Semantic image segmentation based on spatial relationships and inexact graph matching. In: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2020). https://doi.org/10.1109/IPTA50016.2020.9286611

  4. Colliot, O., Camara, O., Bloch, I.: Integration of fuzzy spatial relations in deformable models - application to brain MRI segmentation. Pattern Recogn. 39, 1401–1414 (2006). https://doi.org/10.1016/j.patcog.2006.02.022

    Article  Google Scholar 

  5. Delaye, A., Anquetil, E.: Fuzzy relative positioning templates for symbol recognition. In: International Conference on Document Analysis and Recognition, Beijing, China, September 2011. https://doi.org/10.1109/ICDAR.2011.246

  6. Deruyver, A., Hodé, Y.: Qualitative spatial relationships for image interpretation by using a conceptual graph. Image Vis. Comput. 27(7), 876–886 (2009). https://doi.org/10.1016/j.imavis.2008.10.002, 7th IAPR-TC15 Workshop on Graph-based Representations (GbR 2007)

  7. Fasquel, J.B., Agnus, V., Moreau, J., Soler, L., Marescaux, J.: An interactive medical image segmentation system based on the optimal management of regions of interest using topological medical knowledge. Comput. Methods Programs Biomed. 82, 216–230 (2006). https://doi.org/10.1016/j.cmpb.2006.04.004

    Article  Google Scholar 

  8. Fasquel, J.B., Delanoue, N.: An approach for sequential image interpretation using a priori binary perceptual topological and photometric knowledge and k-means based segmentation. J. Opt. Soc. Am. A 35(6), 936–945 (2018). https://doi.org/10.1364/JOSAA.35.000936

    Article  Google Scholar 

  9. Fasquel, J.B., Delanoue, N.: A graph based image interpretation method using a priori qualitative inclusion and photometric relationships. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1043–1055 (2019). https://doi.org/10.1109/TPAMI.2018.2827939

    Article  Google Scholar 

  10. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41–65 (2018). https://doi.org/10.1016/j.asoc.2018.05.018

    Article  Google Scholar 

  11. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  12. Julca-Aguilar, F., Mouchère, H., Viard-Gaudin, C., Hirata, N.S.T.: A general framework for the recognition of online handwritten graphics. Int. J. Doc. Anal. Recogn. (IJDAR) 23(2), 143–160 (2020). https://doi.org/10.1007/s10032-019-00349-6

    Article  Google Scholar 

  13. Kunze, L., et al.: Combining top-down spatial reasoning and bottom-up object class recognition for scene understanding. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2910–2915. IEEE (2014). https://doi.org/10.1109/IROS.2014.6942963

  14. Kushibar, K., et al.: Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features. Med. Image Anal. 48, 177–186 (2018). https://doi.org/10.1016/j.media.2018.06.006

    Article  Google Scholar 

  15. Lee, B., Yamanakkanavar, N., Choi, J.Y.: Automatic segmentation of brain MRI using a novel patch-wise U-Net deep architecture. PLOS ONE 15(8), 1–20 (2020). https://doi.org/10.1371/journal.pone.0236493

  16. Lezoray, O., Leo, L.: Image Processing and Analysis with Graphs: Theory and Practice. CRC Press, Cambridge (2012)

    Google Scholar 

  17. Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 187–199 (2003). https://doi.org/10.1109/TPAMI.2003.1177151

    Article  Google Scholar 

  18. Moreno, A., Takemura, C., Colliot, O., Camara, O., Bloch, I.: Using anatomical knowledge expressed as fuzzy constraints to segment the heart in CT images. Pattern Recogn. 41(8), 2525–2540 (2008). https://doi.org/10.1016/j.patcog.2008.01.020

    Article  Google Scholar 

  19. Nempont, O., Atif, J., Bloch, I.: A constraint propagation approach to structural model based image segmentation and recognition. Inf. Sci. 246, 1–27 (2013). https://doi.org/10.1016/j.ins.2013.05.030

    Article  MATH  Google Scholar 

  20. Noma, A., Graciano, A.B., Cesar, R.M., Jr., Consularo, L.A., Bloch, I.: Interactive image segmentation by matching attributed relational graphs. Pattern Recogn. 45(3), 1159–1179 (2012). https://doi.org/10.1016/j.patcog.2011.08.017

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. arXiv:2003.04696 [cs, eess, stat], March 2020

  23. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  24. Zanfir, A., Sminchisescu, C.: Deep learning of graph matching. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2684–2693 (2018). https://doi.org/10.1109/CVPR.2018.00284

  25. Zhou, F., De la Torre, F.: Factorized graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1774–1789 (2016). https://doi.org/10.1109/TPAMI.2015.2501802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Chopin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chopin, J., Fasquel, JB., Mouchère, H., Dahyot, R., Bloch, I. (2022). Improving Semantic Segmentation with Graph-Based Structural Knowledge. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics