Skip to main content

BiTr-Unet: A CNN-Transformer Combined Network for MRI Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

Convolutional neural networks (CNNs) have achieved remarkable success in automatically segmenting organs or lesions on 3D medical images. Recently, vision transformer networks have exhibited exceptional performance in 2D image classification tasks. Compared with CNNs, transformer networks have an appealing advantage of extracting long-range features due to their self-attention algorithm. Therefore, we propose a CNN-Transformer combined model, called BiTr-Unet, with specific modifications for brain tumor segmentation on multi-modal MRI scans. Our BiTr-Unet achieves good performance on the BraTS2021 validation dataset with median Dice score 0.9335, 0.9304 and 0.8899, and median Hausdorff distance 2.8284, 2.2361 and 1.4142 for the whole tumor, tumor core, and enhancing tumor, respectively. On the BraTS2021 testing dataset, the corresponding results are 0.9257, 0.9350 and 0.8874 for Dice score, and 3, 2.2361 and 1.4142 for Hausdorff distance. The code is publicly available at https://github.com/JustaTinyDot/BiTr-Unet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTs 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

    Google Scholar 

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  5. Chen, C.F., Fan, Q., Panda, R.: Crossvit: cross-attention multi-scale vision transformer for image classification. arXiv preprint arXiv:2103.14899 (2021)

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Hatamizadeh, A., Yang, D., Roth, H., Xu, D.: UnetR: transformers for 3D medical image segmentation. arXiv preprint arXiv:2103.10504 (2021)

  8. Henry, T., et al.: Brain tumor segmentation with self-ensembled, deeply-supervised 3D u-net neural networks: a BraTs 2020 challenge solution. arXiv preprint arXiv:2011.01045 (2020)

  9. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019). https://doi.org/10.1007/s10278-019-00227-x

    Article  Google Scholar 

  10. Isensee, F., et al.: nnu-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–44 (2015). https://doi.org/10.1038/nature14539

  13. Lin, H., et al.: Cat: cross attention in vision transformer. arXiv preprint arXiv:2106.05786 (2021)

  14. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  15. Lyu, C., Shu, H.: A two-stage cascade model with variational autoencoders and attention gates for MRI brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 435–447. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_39

    Chapter  Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  17. Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H.G., Ogata, T.: Audio-visual speech recognition using deep learning. Appl. Intell. 42(4), 722–737 (2014). https://doi.org/10.1007/s10489-014-0629-7

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Shu, H., et al.: A deep learning approach to re-create raw full-field digital mammograms for breast density and texture analysis. Radiol. Artif. Intell. 3(4), e200097 (2021). https://doi.org/10.1148/ryai.2021200097

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  21. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  23. Wang, W., Chen, C., Ding, M., Li, J., Yu, H., Zha, S.: TransBTS: multimodal brain tumor segmentation using transformer. arXiv preprint arXiv:2103.04430 (2021)

  24. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  25. Wu, H., et al.: CVT: introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

  26. Xie, Y., Zhang, J., Shen, C., Xia, Y.: COTR: efficiently bridging CNN and transformer for 3D medical image segmentation. arXiv preprint arXiv:2103.03024 (2021)

  27. Zhong, L., et al.: 2WM: tumor segmentation and tract statistics for assessing white matter integrity with applications to glioblastoma patients. Neuroimage 223, 117368 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the grant R21AG070303 from the National Institutes of Health and a startup fund from New York University. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or New York University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, Q., Shu, H. (2022). BiTr-Unet: A CNN-Transformer Combined Network for MRI Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics