Skip to main content

Transcriptional Profiling of Pseudomonas aeruginosa Infections

  • Chapter
  • First Online:
Pseudomonas aeruginosa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1386))

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that causes life-devastating acute as well as chronic biofilm-associated infections with limited treatment options. Its success is largely due to its remarkable adaptability. P. aeruginosa uses different long- and short-term adaptive mechanisms to increase its fitness, both at the population level through genetic diversification and at the individual cell level by adapting gene expression. These adapted gene expression profiles can be fixed by the accumulation of patho-adaptive mutations. The latter are often found in transcriptional regulators and lead to rewiring of the regulatory network to promote survival at the infected host site. In this chapter, we review recent developments in transcriptional profiling and explain how these provide new insights into the establishment and maintenance of P. aeruginosa infections. We illustrate what can be learned from the application of advanced RNA-seq technology, such as ex vivo RNA-seq, host–pathogen crosstalk (dual RNA-seq), or recording of transcriptional heterogeneity within a bacterial population (single-cell RNA-seq). In addition, we discuss how large transcriptome datasets from a variety of clinical isolates can be used to gain an expanded understanding of bacterial adaptation during the infection process. Global genotype–phenotype correlation studies provide a unique opportunity to discover new evolutionary pathways of infection-related phenotypes and led to the discovery of different strategies of the pathogen P. aeruginosa to build a biofilm. Insights gained from large-scale, multi-layered functional -omics approaches will continue to contribute to a more comprehensive understanding of P. aeruginosa adaptation to the host habitat and promises to pave the way for novel strategies to combat recalcitrant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13(8):497–508

    Article  CAS  PubMed  Google Scholar 

  • Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, Uhd J, Fritz BG, Seifert R, Berthelsen J, Nielsen TE, Qvortrup K, Givskov M, Tolker-Nielsen T (2021) Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. npj Biofilms Microbiomes 7:1–13

    Article  Google Scholar 

  • Arce-Rodríguez A, Pankratz D, Preusse M, Nikel PI, Häussler S (2022) Dual effect: high NADH levels contribute to efflux-mediated antibiotic resistance but drive lethality mediated by reactive oxygen species. MBio 13:e02434–e02421

    Article  PubMed Central  Google Scholar 

  • Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20

    Article  CAS  PubMed  Google Scholar 

  • Baldelli V, D’Angelo F, Pavoncello V, Fiscarelli EV, Visca P, Rampioni G, Leoni L (2020) Identification of FDA-approved antivirulence drugs targeting the Pseudomonas aeruginosa quorum sensing effector protein PqsE. Virulence 11:652–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielecki P, Komor U, Bielecka A, Müsken M, Puchałka J, Pletz MW, Ballmann M, Martins dos Santos VA, Weiss S, Häussler S (2013) Ex vivo transcriptional profiling reveals a common set of genes important for the adaptation of Pseudomonas aeruginosa to chronically infected host sites. Environ Microbiol 15:570–587

    Article  CAS  PubMed  Google Scholar 

  • Bielecki P, Muthukumarasamy U, Eckweiler D, Bielecka A, Pohl S, Schanz A, Niemeyer U, Oumeraci T, von Neuhoff N, Ghigo JM, Häussler S (2014) In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles. MBio 5:1–12

    Article  Google Scholar 

  • Binder SC, Eckweiler D, Schulz S, Bielecka A, Nicolai T, Franke R, Häussler S, Meyer-Hermann M (2016) Functional modules of sigma factor regulons guarantee adaptability and evolvability. Sci Rep 6:1–11

    Article  Google Scholar 

  • Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58

    Article  Google Scholar 

  • Blattman SB, Jiang W, Oikonomou P, Tavazoie S (2020) Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat Microbiol 5:1192–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodey GP, Bolivar R, Fainstein V, Jadeja L (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5:279–313

    Article  CAS  PubMed  Google Scholar 

  • Boucher JC, Yu H, Mudd MH, Deretic V (1997) Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65:3838–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017–1032

    Article  CAS  PubMed  Google Scholar 

  • Cabeen MT (2014) Stationary phase-specific virulence factor overproduction by a lasR mutant of Pseudomonas aeruginosa. PLoS One 9:e88743

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao L, Gurevich A, Alexander KL, Naman CB, Leão T, Glukhov E, Luzzatto-Knaan T, Vargas F, Quinn R, Bouslimani A, Nothias LF, Singh NK, Sanders JG, Benitez RAS, Thompson LR, Hamid MN, Morton JT, Mikheenko A, Shlemov A, Korobeynikov A, Friedberg I, Knight R, Venkateswaran K, Gerwick WH, Gerwick L, Dorrestein PC, Pevzner PA, Mohimani H (2019) MetaMiner: a scalable peptidogenomics approach for discovery of ribosomal peptide natural products with blind modifications from microbial communities. Cell Syst 9:600–608.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casadesús J, D’Ari R (2002) Memory in bacteria and phage. Bioessays 24:512–518

    Article  PubMed  Google Scholar 

  • Cases I, De Lorenzo V, Ouzounis CA (2003) Transcription regulation and environmental adaptation in bacteria. Trends Microbiol 11(6):248–253

    Article  CAS  PubMed  Google Scholar 

  • Cattoir V, Narasimhan G, Skurnik D, Aschard H, Roux D, Ramphal R, Jyot J, Lory S (2012) Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. MBio 3(6):e00410-12

    Article  PubMed Central  Google Scholar 

  • Chugani S, Greenberg EP (2007) The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog 42:29–35

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O, Tolker-Nielsen T (2019) Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Front Microbiol 10:913

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark ST, Diaz Caballero J, Cheang M, Coburn B, Wang PW, Donaldson SL, Zhang Y, Liu M, Keshavjee S, Yau YCW, Waters VJ, Elizabeth Tullis D, Guttman DS, Hwang DM, Hauser AR, Jain M, Bar-Meir M, McColley SA, Maughan H, Schaedel C, Pittman JE, Smith EE, Mowat E, Hogardt M, Heesemann J, Jain M, Bragonzi A, Fothergill JL, Mowat E, Ledson MJ, Walshaw MJ, Winstanley C, Hill D, Hoffman LR, Behrends V, Foweraker JE, Laughton CR, Brown DFJ, Bilton D, Häussler S, Tümmler B, Weissbrodt H, Rohde M, Steinmetz I, Mayer-Hamblett N, Burns JL, Jelsbak L, Tingpej P, Huse HK, Cramer N, Chung JC, Klockgether J, Workentine ML, Ashish A, Darch SE, Wilder CN, Allada S, Schuster M, Lee B, Johnsen PJ, Barclay ML, Breidenstein EB, de la Fuente-Núñez C, Hancock RE, Chewapreecha C, Williams D, Willner D, Nguyen D, Yeung ATY, Parayno A, Hancock REW, Meritt JH, Kadouri DE, O’Toole GA, Alexander DB, Zuberer DA, Palmer KL, Aye LM, Whiteley M, Zlosnik JEA (2015) Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis. Sci Rep 5:10932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay ME, Hammond JH, Zhong F, Chen X, Kowalski CH, Lee AJ, Porter MS, Hampton TH, Greene CS, Pletneva EV, Hogan DA (2020) Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin. Proc Natl Acad Sci U S A 117:3167–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH, Kirketerp-Møller K, Wolcott RD, Rumbaugh KP, Bjarnsholt T, Whiteley M (2018) Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci U S A 115:E5125–E5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton JW (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Damron FH, Oglesby-Sherrouse AG, Wilks A, Barbier M (2016) Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci Rep 6:1–12

    Article  Google Scholar 

  • D’Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E, Williams P, Visca P, Leoni L, Rampioni G (2018) Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum-sensing system of Pseudomonas aeruginosa. Antimicrob Agents Chemother 62

    Google Scholar 

  • Dar D, Dar N, Cai L, Newman DK (2021) Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373(6556):eabi4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Déziel E, Smith EE, Nguyen H, Ernst RK, Larson Freeman TJ, Spencer DH, Brittnacher M, Hayden HS, Selgrade S, Klausen M, Goodlett DR, Burns JL, Ramsey BW, Miller SI (2007) Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64:512–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16:23–29

    Article  PubMed  Google Scholar 

  • Depke T, Thöming JG, Kordes A, Häussler S, Brönstrup M (2020) Untargeted LC-MS metabolomics differentiates between virulent and avirulent clinical strains of Pseudomonas aeruginosa. Biomolecules 10:1041

    Article  CAS  PubMed Central  Google Scholar 

  • Doing G, Koeppen K, Occipinti P, Harty CE, Hogan DA (2020) Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: an intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 16

    Google Scholar 

  • Donnert M, Elsheikh S, Arce-Rodriguez A, Pawar V, Braubach P, Jonigk D, Haverich A, Weiss S, Müsken M, Häussler S (2020) Targeting bioenergetics is key to counteracting the drug-tolerant state of biofilm-grown bacteria. PLoS Pathog 16:e1009126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dötsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Häussler S (2012) The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS One 7:e31092

    Article  PubMed  PubMed Central  Google Scholar 

  • Dötsch A, Schniederjans M, Khaledi A, Hornischer K, Schulz S, Bielecka A, Eckweiler D, Pohl S, Häussler S (2015) The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation. MBio 6:e00749–e00715

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmassry MM, Mudaliar NS, Kottapalli KR, Dissanaike S, Griswold JA, San Francisco MJ, Colmer-Hamood JA, Hamood AN (2019) Pseudomonas aeruginosa alters its transcriptome related to carbon metabolism and virulence as a possible survival strategy in blood from trauma patients. mSystems 4(4):e00312-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100

    Article  PubMed  Google Scholar 

  • Erdmann J, Thöming JG, Pohl S, Pich A, Lenz C, Häussler S (2019) The core proteome of biofilm-grown clinical Pseudomonas aeruginosa isolates. Cell 8:1129

    Article  CAS  Google Scholar 

  • Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP (2020) Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol 28(9):732–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felgner S, Preusse M, Beutling U, Stahnke S, Pawar V, Rohde M, Brönstrup M, Stradal T, Häussler S (2020) Host-induced spermidine production in motile Pseudomonas aeruginosa triggers phagocytic uptake. Elife 9:1–56

    Article  Google Scholar 

  • Feltner JB, Wolter DJ, Pope CE, Groleau M, Smalley NE, Greenberg EP (2016) LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. Am Soc Microbiol 7:e01513–e01516

    CAS  Google Scholar 

  • Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, Molin S (2012) Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10:841–851

    Article  CAS  PubMed  Google Scholar 

  • Forsman A (2015) Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity (Edinb) 115:276–284

    Article  CAS  Google Scholar 

  • Frimodt-Møller J, Rossi E, Haagensen JAJ, Falcone M, Molin S, Johansen HK (2018) Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts. Sci Rep 8:1–13

    Article  Google Scholar 

  • Frisk A, Schurr JR, Wang G, Bertucci DC, Marrero L, Hwang SH, Hassett DJ, Schurr MJ (2004) Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun 72:5433–5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung C, Naughton S, Turnbull L, Tingpej P, Rose B, Arthur J, Hu H, Harmer C, Harbour C, Hassett DJ, Whitchurch CB, Manos J (2010) Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J Med Microbiol 59:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Furukawa S, Kuchma SL, O’Toole GA (2006) Keeping their options open: acute versus persistent infections. J Bacteriol 188:1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc B Biol Sci 365:547–556

    Article  Google Scholar 

  • Gabrielaite M, Johansen HK, Molin S, Nielsen FC, Marvig RL (2020) Gene loss and acquisition in lineages of Pseudomonas aeruginosa evolving in cystic fibrosis patient airways. MBio 11:1–16

    Article  Google Scholar 

  • Gellatly SL, Needham B, Madera L, Trent MS, Hancock REWW (2012) The Pseudomonas aeruginosa PhoP-PhoQ two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation. Infect Immun 80:3122–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg JB (2000) Pseudomonas: global bacteria. Trends Microbiol 8:55–57

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez MR, Ducret V, Leoni S, Fleuchot B, Jafari P, Raffoul W, Applegate LA, Que Y-A, Perron K (2018) Transcriptome analysis of Pseudomonas aeruginosa cultured in human burn wound exudates. Front Cell Infect Microbiol 8:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govan JRW, Martin DW, Deretic VP (1992) Mucoid Pseudomonas aeruginosa and cystic fibrosis: the role of mutations in muc loci. FEMS Microbiol Lett 100:323–329

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P (2021) Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 25:1315–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HLT (2010) Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6

    Google Scholar 

  • Hall CW, Mah T-F (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41:276–301

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Harrington NE, Littler JL, Harrison F (2022) Transcriptome analysis of Pseudomonas aeruginosa biofilm infection in an ex vivo pig model of the cystic fibrosis lung. Appl Environ Microbiol 88(3):e0178921

    Article  PubMed  Google Scholar 

  • Harrison F, Diggle SP (2016) An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms. Microbiology (United Kingdom) 162:1755–1760

    CAS  Google Scholar 

  • Harty CE, Martins D, Doing G, Mould DL, Clay ME, Occhipinti P, Nguyen D, Hogan DA (2019) Ethanol stimulates trehalose production through a SpoT-DksA-AlgU-dependent pathway in Pseudomonas aeruginosa. J Bacteriol 201:794–812

    Article  Google Scholar 

  • Häussler S (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6:546–551

    Article  PubMed  Google Scholar 

  • Häussler S, Tümmler B, Weissbrodt H, Rohde M, Steinmetz I (1999) Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29:621–625

    Article  PubMed  Google Scholar 

  • Häussler S, Ziegler I, Löttel A, Götz FV, Rohde M, Wehmhöhner D, Saravanamuthu S, Tümmler B, Steinmetz I (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52:295–301

    Article  PubMed  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273

    Article  CAS  PubMed  Google Scholar 

  • Ho Sui SJ, Lo R, Fernandes AR, Caulfield MDG, Lerman JA, Xie L, Bourne PE, Baillie DL, Brinkman FSL (2012) Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int J Antimicrob Agents 40:246–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogardt M, Heesemann J (2013) Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol 358:91–118

    CAS  PubMed  Google Scholar 

  • Imdahl F, Saliba AE (2020) Advances and challenges in single-cell RNA-seq of microbial communities. Curr Opin Microbiol 57:102–110

    Article  CAS  PubMed  Google Scholar 

  • Imdahl F, Vafadarnejad E, Homberger C, Saliba AE, Vogel J (2020) Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat Microbiol 5:1202–1206

    Article  CAS  PubMed  Google Scholar 

  • Imperi F, Massai F, Facchini M, Frangipani E, Visaggio D, Leoni L, Bragonzi A, Visca P (2013a) Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A 110:7458–7463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperi F, Massai F, Pillai CR, Longo F, Zennaro E, Rampioni G, Visc P, Leoni L (2013b) New life for an old Drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James GA, Swogger E, Wolcott R, Pulcini ED, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44

    Article  PubMed  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP Signaling in Bacteria. Annu Rev Genet 40:385–407

    Article  CAS  PubMed  Google Scholar 

  • Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3(4):281–294

    Article  CAS  PubMed  Google Scholar 

  • Jeske A, Arce-Rodriguez A, Thöming JG, Tomasch J, Häussler S (2022) Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates. npj Biofilms Microbiomes 8:1–14

    Article  Google Scholar 

  • Joo H-S, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19:1503–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keays T, Ferris W, Vandemheen KL, Chan F, Yeung S-W, Mah T-F, Ramotar K, Saginur R, Aaron SD (2009) A retrospective analysis of biofilm antibiotic susceptibility testing: a better predictor of clinical response in cystic fibrosis exacerbations. J Cyst Fibros 8:122–127

    Article  CAS  PubMed  Google Scholar 

  • Kelly SA, Panhuis TM, Stoehr AM (2012) Phenotypic plasticity: molecular mechanisms and adaptive significance. In: Comprehensive physiology. Wiley, Hoboken, NJ, pp 1417–1439

    Chapter  Google Scholar 

  • Khaledi A, Schniederjans M, Pohl S, Rainer R, Bodenhofer U, Xia B, Klawonn F, Bruchmann S, Preusse M, Eckweiler D, Dötsch A, Häussler S (2016) Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:4722–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo T, Oliver A, Cabot G, Kola A, Gastmeier P, Hogardt M, Jonas D, Mofrad MR, Bremges A, McHardy AC, Häussler S (2020) Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol Med 12:e10264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klockgether J, Cramer N, Fischer S, Wiehlmann L, Tümmler B (2018) Long-term microevolution of Pseudomonas aeruginosa differs between mildly and severely affected cystic fibrosis lungs. Am J Respir Cell Mol Biol 59:246–256

    Article  CAS  PubMed  Google Scholar 

  • Koehorst JJ, Van Dam JCJ, Van Heck RGA, Saccenti E, Dos Santos VAPM, Suarez-Diez M, Schaap PJ (2016) Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci Rep 6:1–13

    Article  Google Scholar 

  • Kordes A, Grahl N, Koska M, Preusse M, Arce-Rodriguez A, Abraham W-R, Kaever V, Häussler S (2019a) Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host. ISME J 1

    Google Scholar 

  • Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D, Haverich A, Warnecke G, Häussler S (2019b) Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 10:3397

    Article  PubMed  PubMed Central  Google Scholar 

  • Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 110:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL (2010) Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64:539–559

    Article  CAS  PubMed  Google Scholar 

  • Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, DePaolo RW, Seelig G (2021) Microbial single-cell RNA sequencing by split-pool barcoding. Science 371(6531):eaba5257

    Article  CAS  PubMed  Google Scholar 

  • Kumar SS, Tandberg JI, Penesyan A, Elbourne LDH, Suarez-Bosche N, Don E, Skadberg E, Fenaroli F, Cole N, Winther-Larsen HC, Paulsen IT (2018) Dual Transcriptomics of host-pathogen interaction of cystic fibrosis isolate Pseudomonas aeruginosa PASS1 with zebrafish. Front Cell Infect Microbiol 8:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert G, Kussell E (2014) Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet 10:e1004556

    Article  PubMed  PubMed Central  Google Scholar 

  • Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343

    Article  CAS  PubMed  Google Scholar 

  • Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78:510–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Déziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee CK, De Anda J, Baker AE, Bennett RR, Luo Y, Lee EY, Keefe JA, Helali JS, Ma J, Zhao K, Golestanian R, O’Toole GA, Wong GCL (2018) Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc Natl Acad Sci U S A 115:4471–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, She P, Zhou L, Zeng X, Xu L, Liu Y, Chen L, Wu Y (2020) High-throughput identification of antibacterials against Pseudomonas aeruginosa. Front Microbiol 11:3109

    Article  Google Scholar 

  • Lieberman OJ, Orr MW, Wang Y, Lee VT (2014) High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol 9:183–192

    Article  CAS  PubMed  Google Scholar 

  • Lorenz A, Pawar V, Häussler S, Weiss S (2016) Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 590:3941–3959

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA, Wolfgang MC, Wong GCL, O’Toole GA (2015) A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. MBio 6

    Google Scholar 

  • Luther A, Urfer M, Zahn M, Müller M, Wang SY, Mondal M, Vitale A, Hartmann JB, Sharpe T, Monte FL, Kocherla H, Cline E, Pessi G, Rath P, Modaresi SM, Chiquet P, Stiegeler S, Verbree C, Remus T, Schmitt M, Kolopp C, Westwood MA, Desjonquères N, Brabet E, Hell S, LePoupon K, Vermeulen A, Jaisson R, Rithié V, Upert G, Lederer A, Zbinden P, Wach A, Moehle K, Zerbe K, Locher HH, Bernardini F, Dale GE, Eberl L, Wollscheid B, Hiller S, Robinson JA, Obrecht D (2019) Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576:452–458

    Article  CAS  PubMed  Google Scholar 

  • Mahenthiralingam E, Campbell ME, Speert DP (1994) Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone JG (2015) Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist 8:237–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36(4):893–916

    Article  CAS  PubMed  Google Scholar 

  • Martin DW, Schurr MJ, Mudd MH, Govan JR, Holloway BW, Deretic V (1993) Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377–8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvig RL, Sommer LM, Molin S, Johansen HK (2015) Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 47:57–64

    Article  CAS  PubMed  Google Scholar 

  • Mayer-Hamblett N, Rosenfeld M, Gibson RL, Ramsey BW, Kulasekara HD, Retsch-Bogart GZ, Morgan W, Wolter DJ, Pope CE, Houston LS, Kulasekara BR, Khan U, Burns JL, Miller SI, Hoffman LR (2014) Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes. Am J Respir Crit Care Med 190:289–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Mellini M, Di Muzio E, D’Angelo F, Baldelli V, Ferrillo S, Visca P, Leoni L, Polticelli F, Rampioni G (2019) In silico selection and experimental validation of FDA-approved drugs as anti-quorum sensing agents. Front Microbiol 10:2355

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 13:1666–1681

    Article  CAS  PubMed  Google Scholar 

  • Mohimani H, Kersten RD, Liu WT, Wang M, Purvine SO, Wu S, Brewer HM, Pasa-Tolic L, Bandeira N, Moore BS, Pevzner PA, Dorrestein PC (2014) Automated genome mining of ribosomal peptide natural products. ACS Chem Biol 9:1545–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskowitz SM, Foster JM, Emerson J, Burns JL (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müsken M, Di Fiore S, Römling U, Häussler S (2010) A 96-well-plate-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc 5:1460–1469

    Article  PubMed  Google Scholar 

  • Müsken M, Klimmek K, Sauer-Heilborn A, Donnert M, Sedlacek L, Suerbaum S, Häussler S (2017) Towards individualized diagnostics of biofilm-associated infections: a case study. npj Biofilms Microbiomes 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthukumarasamy U, Preusse M, Kordes A, Koska M, Schniederjans M, Khaledi A, Häussler S (2020) Single-nucleotide polymorphism-based genetic diversity analysis of clinical Pseudomonas aeruginosa Isolates. Genome Biol Evol 12:396–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, Grimwood K (2001) Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr 138:699–704

    Article  CAS  PubMed  Google Scholar 

  • Norman TM, Lord ND, Paulsson J, Losick R (2013) Memory and modularity in cell-fate decision making. Nature 503:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer KL, Aye LM, Whiteley M (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189:8079–8087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Fan Z, Chen L, Liu C, Bai F, Wei Y, Tian Z, Dong Y, Shi J, Chen H, Jin Y, Cheng Z, Jin S, Lin J, Wu W (2020) PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res 48:5967–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14(9):576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patell S, Gu M, Davenport P, Givskov M, Waite RD, Welch M (2010) Comparative microarray analysis reveals that the core biofilm-associated transcriptome of Pseudomonas aeruginosa comprises relatively few genes. Environ Microbiol Rep 2:440–448

    Article  CAS  PubMed  Google Scholar 

  • Penaranda C, Chumbler NM, Hung DT (2021) Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog 17:e1009534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209(Pt 12):2362–2367

    Article  PubMed  Google Scholar 

  • Pohl S, Klockgether J, Eckweiler D, Khaledi A, Schniederjans M, Chouvarine P, Tümmler B, Häussler S (2014) The extensive set of accessory Pseudomonas aeruginosa genomic components. FEMS Microbiol Lett 356:235–241

    Article  CAS  PubMed  Google Scholar 

  • Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond Ser B Biol Sci 270:1433–1440

    Article  Google Scholar 

  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58

    Article  CAS  PubMed  Google Scholar 

  • Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO (2021) Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 50(7):3658–3672

    Article  Google Scholar 

  • Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228

    Article  PubMed  Google Scholar 

  • Ronin I, Katsowich N, Rosenshine I, Balaban NQ (2017) A long-term epigenetic memory switch controls bacterial virulence bimodality. Elife 6:e19599

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi E, Falcone M, Molin S, Johansen HK (2018) High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat Commun 9:3459

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, Molin S, Johansen HK (2021) Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 19(5):331–342

    Article  CAS  PubMed  Google Scholar 

  • Sadiq S, Rana NF, Zahid MA, Zargaham MK, Tanweer T, Batool A, Naeem A, Nawaz A, Rizwan-ur-Rehman, Muneer Z, Siddiqi AR (2020) Virtual screening of FDA-approved drugs against LasR of Pseudomonas aeruginosa for antibiofilm potential. Molecules 25:3723

    Article  CAS  PubMed Central  Google Scholar 

  • Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56:5202–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sastry AV, Gao Y, Szubin R, Hefner Y, Xu S, Kim D, Choudhary KS, Yang L, King ZA, Palsson BO (2019) The Escherichia coli transcriptome mostly consists of independently regulated modules. Nat Commun 10:5536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, Min W, Dietrich LEP (2019) Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun 10:1–10

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer, Sunderland, MA

    Google Scholar 

  • Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dötsch A, Hornischer K, Bruchmann S, Düvel J, Häussler S (2015) Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog 11:e1004744

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuster M, Peter Greenberg E (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81

    Article  CAS  PubMed  Google Scholar 

  • Seupt A, Schniederjans M, Tomasch J, Häussler S (2021) Expression of the MexXY aminoglycoside efflux pump and presence of an aminoglycoside-modifying enzyme in clinical Pseudomonas aeruginosa isolates are highly correlated. Antimicrob Agents Chemother 65(1):e01166-20

    Article  Google Scholar 

  • Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    Article  CAS  PubMed  Google Scholar 

  • Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487–8492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Aceves MP, Cocotl-Yañez M, Servín-González L, Soberón-Chávez G (2021) The Rhl quorum-sensing system is at the top of the regulatory hierarchy under phosphate-limiting conditions in Pseudomonas aeruginosa PAO1. J Bacteriol 203:e00475–e00420

    Article  PubMed  PubMed Central  Google Scholar 

  • Soukarieh F, Mashabi A, Richardson W, Oton EV, Romero M, Roberston SN, Grossman S, Sou T, Liu R, Halliday N, Kukavica-Ibrulj I, Levesque RC, Bergstrom CASS, Kellam B, Emsley J, Heeb S, Williams P, Stocks MJ, Cámara M (2021) Design and evaluation of new quinazolin-4(3 H )-one derived PqsR antagonists as quorum sensing quenchers in Pseudomonas aeruginosa. ACS Infect Dis 7:2666–2685

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS (2015) Antimicrobial tolerance in biofilms. Microbiol Spectr 3

    Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  • Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackerman Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW, Chory EJ, Church GM, Brown ED, Jaakkola TS, Barzilay R, Collins JJ (2020) A deep learning approach to antibiotic discovery. Cell 180:688–702.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Hammond JH, Hogan DA, Greene CS (2016) ADAGE-based integration of publicly available Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. mSystems 1(1):e00025–e00015

    Article  PubMed  PubMed Central  Google Scholar 

  • Tata M, Wolfinger MT, Amman F, Roschanski N, Dötsch A, Sonnleitner E, Häussler S, Bläsi U (2016) RNASeq based transcriptional profiling of Pseudomonas aeruginosa PA14 after short- and long-term anoxic cultivation in synthetic cystic fibrosis sputum medium. PLoS One 11:e0147811

    Article  PubMed  PubMed Central  Google Scholar 

  • Thöming JG, Häussler S (2022) Pseudomonas aeruginosa is more tolerant under biofilm than under planktonic growth conditions: a multi-isolate survey. Front Cell Infect Microbiol 12:113

    Article  Google Scholar 

  • Thöming JG, Tomasch J, Preusse M, Koska M, Grahl N, Pohl S, Willger SD, Kaever V, Müsken M, Häussler S (2020) Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype. npj Biofilms Microbiomes 6:1–13

    Article  Google Scholar 

  • Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M (2014) Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet 10:e1004518

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291(24):12547–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A (2001) The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 98:6911–6916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valli RXE, Lyng M, Kirkpatrick CL (2020) There is no hiding if you Seq: recent breakthroughs in Pseudomonas aeruginosa research revealed by genomic and transcriptomic next-generation sequencing. J Med Microbiol 69(2):162–175

    Article  PubMed  Google Scholar 

  • Wagner VE, Iglewski BH (2008) P. aeruginosa biofilms in CF infection. Clin Rev Allergy Immunol 35:124–134

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192(1):365–369

    Article  CAS  PubMed  Google Scholar 

  • Wang BX, Cady KC, Oyarce GC, Ribbeck K, Lauba MT (2021) Two-component signaling systems regulate diverse virulence-associated traits in Pseudomonas aeruginosa. Appl Environ Microbiol 87:1–18

    Article  Google Scholar 

  • Wheeler KM, Cárcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux S, Cummings RD, Wozniak DJ, Ribbeck K (2019) Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 4(12):2146–2154

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2017) WHO publishes list of bacteria for which new antibiotics are urgently needed [WWW Document]. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 12.8.21

  • WHO (2021) Antimicrobial resistance [WWW Document]. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 3.10.22

  • Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Köhler T, Van Delden C, Weinel C, Slickers P, Tümmler B (2007) Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:8101–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  PubMed  Google Scholar 

  • Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, McInnerney K, Stewart PS, Franklin MJ (2012) Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 194:2062–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GP, Bycroft BW et al (1995) Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:9427–9431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winstanley C, O’Brien S, Brockhurst MA (2016) Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 24:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin AP (2008) Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS One 3:e1700

    Article  PubMed  PubMed Central  Google Scholar 

  • Workentine ML, Sibley CD, Glezerson B, Purighalla S, Norgaard-Gron JC, Parkins MD, Rabin HR, Surette MG (2013) Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS One 8:e60225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Maltesen RG, Larsen LH, Schønheyder HC, Le VQ, Nielsen JL, Nielsen PH, Thomsen TR, Nielsen KL (2016) In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol 16:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaeger LN, Coles VE, Chan DCK, Burrows LL (2021) How to kill Pseudomonas—emerging therapies for a challenging pathogen. Ann N Y Acad Sci 1496(1):59–81

    Article  PubMed  Google Scholar 

  • Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT, Rau MH, Hansen SK, Folkesson A, Johansen HK, Ciofu O, Hoiby N, Sommer MOAA, Molin S (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA 108:7481–7486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Häussler .

Editor information

Editors and Affiliations

Ethics declarations

We gratefully thank Kathryn J. Turnbull for proofreading the manuscript. S.H. was funded by the EU (ERC Consolidator Grant COMBAT 724290) and received funding as part of the excellence cluster RESIST (Resolving Infection Susceptibility; EXC 2155). Furthermore, S.H. received funding from the German Research Foundation (DFG SPP 1879) and the Novo Nordisk Foundation (NNF 18OC0033946).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thöming, J.G., Häussler, S. (2022). Transcriptional Profiling of Pseudomonas aeruginosa Infections. In: Filloux, A., Ramos, JL. (eds) Pseudomonas aeruginosa. Advances in Experimental Medicine and Biology, vol 1386. Springer, Cham. https://doi.org/10.1007/978-3-031-08491-1_11

Download citation

Publish with us

Policies and ethics