Skip to main content

Formal Choreographic Languages

  • Conference paper
  • First Online:
Coordination Models and Languages (COORDINATION 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((LNCS,volume 13271))

Included in the following conference series:

Abstract

We introduce a meta-model based on formal languages, dubbed formal choreographic languages, to study message-passing systems. Our main motivation is to establish a framework for the comparison and generalisation of standard constructions and properties from the literature. In particular, we consider notions such as global view, local view, and projections from the former to the latter. The correctness of local views projected from global views is characterised in terms of a closure property. A condition is also devised to guarantee relevant communication properties such as (dead)lock-freedom. Formal choreographic languages capture existing formalisms for message-passing systems; we detail the cases of multiparty session types and choreography automata. Unlike many other models, formal choreographic languages can naturally model systems exhibiting non-regular behaviour.

Research partly supported by the EU H2020 RISE programme under the Marie Skłodowska-Curie grant agreement No 778233. Work partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart Systems). The first and second authors have also been partially supported by INdAM as members of GNCS (Gruppo Nazionale per il Calcolo Scientifico). The first author has also been partially supported by Progetto di Ateneo UNICT PIACERI. The authors thank the anonymous reviewers for their helpful comments, in particular one reviewer of a previous submission for suggesting the relation with Galois connections. The authors also thank Mariangiola Dezani-Ciancaglini for her support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These sets may be infinite; formal languages over infinite alphabets have been studied, e.g., in [4].

  2. 2.

    In [37], projectability embeds well-branchedness.

References

  1. Alur, R.: The benefits of exposing calls and returns. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 2–3. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_2

    Chapter  Google Scholar 

  2. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 797–808. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_65

    Chapter  MATH  Google Scholar 

  3. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Trans. Softw. Eng. 29(7), 623–633 (2003)

    Article  Google Scholar 

  4. Autebert, J.-M., Beauquier, J., Boasson, L.: Langages sur des alphabets infinis. Discrete Appl. Math. 2(1), 1–20 (1980). http://www.sciencedirect.com/science/article/pii/0166218X80900505. https://doi.org/10.1016/0166-218X(80)90050-5

  5. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Composition and decomposition of multiparty sessions. J. Log. Algebraic Methods Program. 119, 100620 (2021). http://www.sciencedirect.com/science/article/pii/S235222082030105X. https://doi.org/10.1016/j.jlamp.2020.100620

  6. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0_6

    Chapter  Google Scholar 

  7. Barbanera, F., Lanese, I., Tuosto, E.: Formal choreographic languages (extended version). Technical report, GSSI (2022). https://emwww.github.io/home/tr/fcl.pdf

  8. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, 28 March–1 April 2011, pp. 795–804. ACM (2011). https://doi.org/10.1145/1963405.1963516

  9. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, 22–28 January 2012, pp. 191–202 (2012). https://doi.org/10.1145/2103656.2103680

  10. Bonér, J.: Reactive Microsystems - The Evolution Of Microservices At Scale. O’Reilly (2018)

    Google Scholar 

  11. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)

    Article  MathSciNet  Google Scholar 

  12. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77351-1_4

    Chapter  MATH  Google Scholar 

  13. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered programming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1–8:78 (2012). https://doi.org/10.1145/2220365.2220367

  14. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2), 238–302 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dezani-Ciancaglini, M., Ghilezan, S., Jaksic, S., Pantovic, J., Yoshida, N.: Precise subtyping for synchronous multiparty sessions. In: Gay, S., Alglave, J. (eds.) Proceedings Eighth International Workshop on Programming Language Approaches to Concurrency- and Communication-cEntric Software, PLACES 2015, London, UK, 18th April 2015, vol. 203. EPTCS, pp. 29–43 (2015). https://doi.org/10.4204/EPTCS.203.3

  16. Duboc, C.: Mixed product and asynchronous automata. TCS 48(3), 183–199 (1986). https://doi.org/10.1016/0304-3975(86)90094-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Eilenberg, S.: Automata, Languages, and Machines., B. Pure and Applied Mathematics. Academic Press (1976). https://www.worldcat.org/oclc/310535259

  18. Xiang, F., Bultan, T., Jianwen, S.: Conversation protocols: a formalism for specification and verification of reactive electronic services. TCS 328(1–2), 19–37 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Gastin, P.: Infinite traces. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 277–308. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2_12

    Chapter  Google Scholar 

  20. Gastin, P.: Recognizable and rational languages of finite and infinite traces. In: Choffrut, C., Jantzen, M. (eds.) STACS 1991. LNCS, vol. 480, pp. 89–104. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0020790

    Chapter  Google Scholar 

  21. Gastin, P., Petit, A., Zielonka, W.: A Kleene theorem for infinite trace languages. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 254–266. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54233-7_139

    Chapter  MATH  Google Scholar 

  22. Genest, B., Muscholl, A.: Constructing exponential-size deterministic Zielonka automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 565–576. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_48

    Chapter  MATH  Google Scholar 

  23. Ghilezan, S., Jaksic, S., Pantovic, J., Scalas, A., Yoshida, N.: Precise subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program. 104, 127–173 (2019). https://doi.org/10.1016/j.jlamp.2018.12.002

    Article  MathSciNet  MATH  Google Scholar 

  24. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J. ACM 63(1), 9:1–9:67 (2016). Extended version of a paper presented at POPL08. https://doi.org/10.1145/2827695

  25. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM Comput. Surv. 49(1), 3:1–3:36 (2016)

    Google Scholar 

  26. ITU Telecommunication Standardization Sector. ITU-T recommendation Z.120. Message Sequence Charts (MSC’96) (1996)

    Google Scholar 

  27. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web services choreography description language version 1.0. Technical report, W3C (2005). http://www.w3.org/TR/ws-cdl-10/

  28. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177, 122–159 (2002)

    Article  MathSciNet  Google Scholar 

  29. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile processes. ACM Trans. Program. Lang. Syst. 32(5), 16:1–16:49 (2010). https://doi.org/10.1145/1745312.1745313

  30. Kouzapas, D., Yoshida, N.: Globally governed session semantics. Log. Methods Comput. Sci. 10(4) (2014). https://doi.org/10.2168/LMCS-10(4:20)2014

  31. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between interaction- and process-oriented choreographies. In: Software Engineering and Formal Methods, SEFM 2008, pp. 323–332 (2008)

    Google Scholar 

  32. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off go: liveness and safety for channel-based programming. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, 18–20 January 2017, pp. 748–761. ACM (2017). http://dl.acm.org/citation.cfm?id=3009847

  33. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17906-2_30

    Chapter  Google Scholar 

  34. OMG. Business Process Model and Notation (BPMN), Version 2.0, January 2011. https://www.omg.org/spec/BPMN

  35. Padovani, L.: From lock freedom to progress using session types. In: Yoshida, N., Vanderbauwhede, W. (eds.) Proceedings 6th Workshop on Programming Language Approaches to Concurrency and Communication-cEntric Software, PLACES 2013, Rome, Italy, 23rd March 2013, vol. 137. EPTCS, pp. 3–19 (2013). https://doi.org/10.4204/EPTCS.137.2

  36. Redziejowski, R.R.: Infinite-word languages and continuous mappings. TCS 43, 59–79 (1986). https://doi.org/10.1016/0304-3975(86)90166-0

    Article  MathSciNet  MATH  Google Scholar 

  37. Severi, P., Dezani-Ciancaglini, M.: Observational equivalence for multiparty sessions. Fundam. Informaticae 170(1–3), 267–305 (2019). https://doi.org/10.3233/FI-2019-1863

    Article  MathSciNet  MATH  Google Scholar 

  38. Staiger, L.: \(\omega \)-languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 339–387. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_6

    Chapter  Google Scholar 

  39. Zielonka, W.: Notes on finite asynchronous automata. RAIRO Theor. Informatics Appl. 21(2), 99–135 (1987). https://doi.org/10.1051/ita/1987210200991

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Tuosto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbanera, F., Lanese, I., Tuosto, E. (2022). Formal Choreographic Languages. In: ter Beek, M.H., Sirjani, M. (eds) Coordination Models and Languages. COORDINATION 2022. IFIP Advances in Information and Communication Technology, vol 13271. Springer, Cham. https://doi.org/10.1007/978-3-031-08143-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08143-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08145-3

  • Online ISBN: 978-3-031-08143-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics