Skip to main content

A Deep Learning-Based Method for Uncovering GPCR Ligand-Induced Conformational States Using Interpretability Techniques

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

There is increasing interest in the development of tools for investigating the protein ligand space. Understanding the underlying mechanisms of G protein-coupled receptors (GPCR) in the ligand-binding process is of particular interest due to their role in pharmacoproteomics. In this work, we propose the study of GPCR ligand-induced conformational variations from Molecular Dynamics (MD) simulations using Deep Learning (DL)-based methods. We devise and train a Convolutional Neural Network (CNN) for classifying the states for both ligand-free structure and the bound of agonists in the \(\beta 2\)-adrenergic receptor. We also study the transformation of MD data into an interaction network matrix to further improve and facilitate the analyses without significant loss of information. Our method introduces a framework for the study of the effect of ligand-receptor binding activity that includes a novel analysis based on interpretability algorithms, allowing the quantification of the contribution of individual residues to structural re-arrangements.

This research is partially funded by research grant PID2019-104551RB-I00.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amitai, G., et al.: Network analysis of protein structures identifies functional residues. J. Mol. Biol. 344(4), 1135–1146 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bajorath, J., et al.: Artificial intelligence in drug discovery: Into the great wide open. J. Med. Chem. 63(16), 8651–8652 (2020)

    Google Scholar 

  4. Bera, I., Payghan, P.V.: Use of molecular dynamics simulations in structure-based drug discovery. Curr. Pharm. Des. 25(31), 3339–3349 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Brinda, K., Vishveshwara, S.: A network representation of protein structures: implications for protein stability. Biophys. J . 89(6), 4159–4170 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan, H.S., Shan, H., Dahoun, T., Vogel, H., Yuan, S.: Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 40(8), 592–604 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. Cherezov, V., et al.: High-resolution crystal structure of an engineered human \(\beta \)2-adrenergic G protein-coupled receptor. Science 318(5854), 1258–1265 (2007)

    Article  CAS  Google Scholar 

  8. Cui, Y., Dong, Q., Hong, D., Wang, X.: Predicting protein-ligand binding residues with deep convolutional neural networks. BMC Bioinform. 20(1), 1–12 (2019)

    Article  CAS  Google Scholar 

  9. Fleming, N.: How artificial intelligence is changing drug discovery. Nature 557(7706), S55–S55 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. Greene, L.H.: Protein structure networks. Brief. Funct. Genomics 11(6), 469–478 (2012)

    Article  PubMed  Google Scholar 

  11. Gutierrez, A.N., McDonald, P.H.: GPCRs: emerging anti-cancer drug targets. Cell. Signal. 41, 65–74 (2018)

    Article  Google Scholar 

  12. Hassan-Harrirou, H., Zhang, C., Lemmin, T.: RosENet: improving binding affinity prediction by leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks. J. Chem. Inf. Model. 60(6), 2791–2802 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Hollingsworth, S.A., Dror, R.O.: Molecular dynamics simulation for all. Neuron 99(6), 1129–1143 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, S., Zhang, C., Chen, P., Gu, P., Zhang, J., Wang, B.: Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks. BMC Bioinform. 20(25), 1–12 (2019)

    Google Scholar 

  16. Jiang, H., et al.: Guiding conventional protein-ligand docking software with convolutional neural networks. J. Chem. Inf. Model. 60(10), 4594–4602 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A.S., De Fabritiis, G.: DeepSite: protein-binding site predictor using 3d-convolutional neural networks. Bioinformatics 33(19), 3036–3042 (2017)

    Article  PubMed  Google Scholar 

  18. Kohlhoff, K.J., et al.: Cloud-based simulations on google exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem. 6(1), 15–21 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. Latorraca, N.R., Venkatakrishnan, A., Dror, R.O.: GPCR dynamics: structures in motion. Chem. Rev. 117(1), 139–155 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. Lavecchia, A.: Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov. Today 24(10), 2017–2032 (2019)

    Article  PubMed  Google Scholar 

  21. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16(6), 321–332 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lim, J., Ryu, S., Park, K., Choe, Y.J., Ham, J., Kim, W.Y.: Predicting drug-target interaction using 3D structure-embedded graph representations from graph neural networks. arXiv preprint arXiv:1904.08144 (2019)

  23. Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., Yao, X.: Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 13(1), 23–37 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 29(2), 102–127 (2019)

    Article  PubMed  Google Scholar 

  25. Lundstrom, K.: An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. G Protein-Coupled Receptors Drug Discov. 552, 51–66 (2009)

    Google Scholar 

  26. Maurice, P., Guillaume, J.L., Benleulmi-Chaachoua, A., Daulat, A.M., Kamal, M., Jockers, R.: GPCR-interacting proteins, major players of GPCR function. Adv. Pharmacol. 62, 349–380 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Meyer, J.G.: Deep learning neural network tools for proteomics. Cell Rep. Methods 1(2), 100003 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paliwal, K., Lyons, J., Heffernan, R.: A short review of deep learning neural networks in protein structure prediction problems. Adv. Tech. Biol. Med. 3(3), 1–2 (2015)

    Google Scholar 

  29. Plante, A., Shore, D.M., Morra, G., Khelashvili, G., Weinstein, H.: A machine learning approach for the discovery of ligand-specific functional mechanisms of GPCRs. Molecules 24(11), 2097 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  30. Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., Unterthiner, T.: Interpretable deep learning in drug discovery. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 331–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_18

    Chapter  Google Scholar 

  31. Rosenbaum, D.M., Rasmussen, S.G., Kobilka, B.K.: The structure and function of G-protein-coupled receptors. Nature 459(7245), 356–363 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenbaum, D.M., et al.: Structure and function of an irreversible agonist-\(\beta \)2 adrenoceptor complex. Nature 469(7329), 236–240 (2011)

    Article  CAS  Google Scholar 

  33. Seeber, M., Cecchini, M., Rao, F., Settanni, G., Caflisch, A.: Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinformatics 23(19), 2625–2627 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. Shen, C., Ding, J., Wang, Z., Cao, D., Ding, X., Hou, T.: From machine learning to deep learning: advances in scoring functions for protein-ligand docking. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10(1), e1429 (2020)

    Article  CAS  Google Scholar 

  35. Snider, J., Kotlyar, M., Saraon, P., Yao, Z., Jurisica, I., Stagljar, I.: Fundamentals of protein interaction network mapping. Mol. Syst. Biol. 11(12), 848 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Torrens-Fontanals, M., Stepniewski, T.M., Aranda-García, D., Morales-Pastor, A., Medel-Lacruz, B., Selent, J.: How do molecular dynamics data complement static structural data of GPCRs. Int. J. Mol. Sci. 21(16), 5933 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  37. Vamathevan, J., et al.: Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18(6), 463–477 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vellido, A.: The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput. Appl. 32(24), 18069–18083 (2019). https://doi.org/10.1007/s00521-019-04051-w

    Article  Google Scholar 

  39. Vieira, S., Pinaya, W.H., Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017)

    Article  PubMed  Google Scholar 

  40. Zhu, H.: Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol. 60, 573–589 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. Gutiérrez-Mondragón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutiérrez-Mondragón, M.A., König, C., Vellido, A. (2022). A Deep Learning-Based Method for Uncovering GPCR Ligand-Induced Conformational States Using Interpretability Techniques. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics