Skip to main content

Secure Non-interactive Reduction and Spectral Analysis of Correlations

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Abstract

Correlated pairs of random variables are a central concept in information-theoretically secure cryptography. Secure reductions between different correlations have been studied, and completeness results are known. Further, the complexity of such reductions is intimately connected with circuit complexity and efficiency of locally decodable codes. As such, making progress on these complexity questions faces strong barriers. Motivated by this, in this work, we study a restricted form of secure reductions—namely, Secure Non-Interactive Reductions (SNIR)—which is still closely related to the original problem, and establish several fundamental results and relevant techniques for it.

We uncover striking connections between SNIR and linear algebraic properties of correlations. Specifically, we define the spectrum of a correlation, and show that a target correlation has a SNIR to a source correlation only if the spectrum of the latter contains the entire spectrum of the former. We also establish a “mirroring lemma” that shows an unexpected symmetry between the two parties in a SNIR, when viewed through the lens of spectral analysis. We also use cryptographic insights and elementary linear algebraic analysis to fully characterize the role of common randomness as well as local randomness in SNIRs. We employ these results to resolve several fundamental questions about SNIRs, and to define future directions.

V. Narayanan—Supported by the Department of Atomic Energy, India project RTI4001, ERC Project NTSC (742754) and ISF Grants 1709/14 & 2774/20.

M. Prabhakaran—Supported by a Ramanujan Fellowship and Joint Indo-Israel Project DST/INT/ISR/P-16/2017 of Dept. of Science and Technology, India.

V. M. Prabhakaran—Supported by the Department of Atomic Energy, India project RTI4001, and Science & Engineering Research Board, India project MTR/2020/000308.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The choice of the exact correlation is not crucial and can be replaced by any finite complete functionality, without altering the complexity beyond constant factors [25].

  2. 2.

    There does exist an alternate model of Zero Communication Reductions which allows non-interactive function computation conditioned on a predicate [27]. But here we consider the standard model of secure 2-party computation, except for the restriction of being non-interactive.

  3. 3.

    Here we use the convention that symbols with 0 probability are omitted from the alphabets \(\mathcal {X}\) and \(\mathcal {Y}\), so that all the marginal probabilities \(\boldsymbol{a} _x\) and \(\boldsymbol{b} _y\) are strictly positive.

  4. 4.

    There is a caveat: if the correlation involves common information – i.e., if it is over pairs that can be written as ((xc), (yc)) where c indicates a piece of information available to both parties – then, the distribution of the common random variable itself is not captured by the correlation operator. But as we shall see, this component of the distribution can indeed be ignored when studying the feasibility of \(\textsf {SNIR}\) s.

  5. 5.

    Recall that we use the convention that a distribution matrix does not have an all-0 row or column, and hence the diagonal matrices \(\boldsymbol{\Delta }_{M^\intercal }\) and \(\boldsymbol{\Delta }_{M}\) have strictly positive entries in their diagonals.

References

  1. Agarwal, P., Narayanan, V., Pathak, S., Prabhakaran, M., Prabhakaran, V.M., Rehan, M.A.: Secure non-interactive reduction and spectral analysis of correlations. Cryptology ePrint Archive (2022)

    Google Scholar 

  2. Agrawal, S., Prabhakaran, M.: On fair exchange, fair coins and fair sampling. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 259–276. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_15

    Chapter  Google Scholar 

  3. Ahlswede, R., Gacs, P.: Spreading of sets in product spaces and hypercontraction of the Markov operator. Ann. Probab. 4(6), 925–939 (1976)

    Article  MathSciNet  Google Scholar 

  4. Anantharam, V., Gohari, A., Kamath, S., Nair, C.: On maximal correlation, hypercontractivity, and the data processing inequality studied by Erkip and Cover. CoRR. abs/1304.6133 (2013)

    Google Scholar 

  5. Beigi, S., Gohari, A.: On the duality of additivity and tensorization. In: ISIT, pp. 2381–2385. IEEE (2015)

    Google Scholar 

  6. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic complexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_14

    Chapter  MATH  Google Scholar 

  7. Beimel, A., Malkin, T.: A quantitative approach to reductions in secure computation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 238–257. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_14

    Chapter  Google Scholar 

  8. Borell, C.: Positivity improving operators and hypercontractivity. Mathematische Zeitschrift 180, 225–234 (1982)

    Article  MathSciNet  Google Scholar 

  9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from Ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14

    Chapter  Google Scholar 

  11. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, USA (1997)

    MATH  Google Scholar 

  12. De, A., Mossel, E., Neeman, J.: Non interactive simulation of correlated distributions is decidable. In: SODA 2018, pp. 2728–2746. SIAM (2018)

    Google Scholar 

  13. Gács, P., Körner, J.: Common information is far less than mutual information. Probl. Control Inf. Theory 2(2), 149–162 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Garg, S., Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with one-way communication. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 191–208. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_10

    Chapter  Google Scholar 

  15. Ghazi, B., Kamath, P., Sudan, M.: Decidability of non-interactive simulation of joint distributions. In: FOCS, pp. 545–554. IEEE Computer Society (2016)

    Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC, pp. 218–229 (1987). See [?, Chap. 7] Goldreich04book for more details

    Google Scholar 

  17. Goldrcich, O., Vainish, R.: How to solve any protocol problem - an efficiency improvement (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_6

    Chapter  Google Scholar 

  18. Hirschfeld, H.O., Wishart, J.: A connection between correlation and contingency. In: Proceedings of the Cambridge Philosophical Society, vol. 31, no. 4, p. 520 (1935)

    Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  20. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  21. Kamath, S., Anantharam, V.: On non-interactive simulation of joint distributions. IEEE Trans. Inf. Theory 62(6), 3419–3435 (2016)

    Article  MathSciNet  Google Scholar 

  22. Khorasgani, H.A., Maji, H.K., Nguyen, H.H.: Decidability of secure non-interactive simulation of doubly symmetric binary source. Cryptology ePrint Archive, Report 2021/190 (2021). https://eprint.iacr.org/2021/190

  23. Khorasgani, H.A., Maji, H.K., Nguyen, H.H.: Secure non-interactive simulation: feasibility & rate. In: CRYPTO (2022). To appear

    Google Scholar 

  24. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)

    Google Scholar 

  25. Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization of completeness for two-party randomized function evaluation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 659–676. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_36

    Chapter  Google Scholar 

  26. Maji, H., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation functionalities, volume 10 of cryptology and information security series, pp. 249–283. IOS Press, Amsterdam (2013)

    Google Scholar 

  27. Narayanan, V., Prabhakaran, M., Prabhakaran, V.M.: Zero-communication reductions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp. 274–304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_10

    Chapter  Google Scholar 

  28. Rènyi, A.: On measures of dependence. Acta Mathematica Hungarica 10(3–4), 441–451 (1959)

    Google Scholar 

  29. Sudan, M., Tyagi, H., Watanabe, S.: Communication for generating correlation: a unifying survey. IEEE Trans. Inf. Theory 66(1), 5–37 (2020)

    Article  MathSciNet  Google Scholar 

  30. Witsenhausen, H.S.: On sequences of pairs of dependent random variables. SIAM J. Appl. Math. 28(1), 100–113 (1975)

    Article  MathSciNet  Google Scholar 

  31. Wyner, A.D.: The common information of two dependent random variables. IEEE Trans. Inf. Theory 21(2), 163–179 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pratyush Agarwal or Varun Narayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, P., Narayanan, V., Pathak, S., Prabhakaran, M., Prabhakaran, V.M., Rehan, M.A. (2022). Secure Non-interactive Reduction and Spectral Analysis of Correlations. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham. https://doi.org/10.1007/978-3-031-07082-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07082-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07081-5

  • Online ISBN: 978-3-031-07082-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics