Skip to main content

Beyond Quadratic Speedups in Quantum Attacks on Symmetric Schemes

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Abstract

In this paper, we report the first quantum key-recovery attack on a symmetric block cipher design, using classical queries only, with a more than quadratic time speedup compared to the best classical attack.

We study the 2XOR-Cascade construction of Gaži and Tessaro (EUROCRYPT 2012). It is a key length extension technique which provides an n-bit block cipher with \(\frac{5n}{2}\) bits of security out of an n-bit block cipher with 2n bits of key, with a security proof in the ideal model. We show that the offline-Simon algorithm of Bonnetain et al. (ASIACRYPT 2019) can be extended to, in particular, attack this construction in quantum time \(\widetilde{\mathcal {O}}\left( 2^n \right) \), providing a 2.5 quantum speedup over the best classical attack.

Regarding post-quantum security of symmetric ciphers, it is commonly assumed that doubling the key sizes is a sufficient precaution. This is because Grover’s quantum search algorithm, and its derivatives, can only reach a quadratic speedup at most. Our attack shows that the structure of some symmetric constructions can be exploited to overcome this limit. In particular, the 2XOR-Cascade cannot be used to generically strengthen block ciphers against quantum adversaries, as it would offer only the same security as the block cipher itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Though it seems also impossible in some restricted cases, for example white-box encryption. Here the adversary tries to recover the key of a block cipher whose specification is completely given to him. He can realize the quantum oracle using this specification.

  2. 2.

    For completeness, we include a short proof of this claim in the full version of the paper [15].

References

  1. Aaronson, S., Ambainis, A.: Forrelation: a problem that optimally separates quantum from classical computing. SIAM J. Comput. 47(3), 982–1038 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aaronson, S., Ben-David, S., Kothari, R.: Separations in query complexity using cheat sheets. In: STOC, pp. 863–876. ACM (2016)

    Google Scholar 

  3. Aaronson, S., Ben-David, S., Kothari, R., Tal, A.: Quantum implications of huang’s sensitivity theorem. Electron. Colloquium Comput. Complex. 27, 66 (2020)

    Google Scholar 

  4. Ambainis, A., Balodis, K., Belovs, A., Lee, T., Santha, M., Smotrovs, J.: Separations in query complexity based on pointer functions. In: STOC, pp. 800–813. ACM (2016)

    Google Scholar 

  5. Ambainis, A., de Wolf, R.: Average-case quantum query complexity. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 133–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3_11

    Chapter  Google Scholar 

  6. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_4

    Chapter  MATH  Google Scholar 

  7. Bansal, N., Sinha, M.: k-forrelation optimally separates quantum and classical query complexity. In: STOC, pp. 1303–1316. ACM (2021)

    Google Scholar 

  8. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)

    Article  MathSciNet  Google Scholar 

  9. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput. 18(4), 766–776 (1989)

    Article  MathSciNet  Google Scholar 

  10. Bonnetain, X.: Quantum key-recovery on Full AEZ. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_20

    Chapter  Google Scholar 

  11. Bonnetain, X.: Tight bounds for Simon’s algorithm. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 3–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88238-9_1

    Chapter  Google Scholar 

  12. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher, A.: Quantum attacks without superposition queries: the offline Simon’s algorithm. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_20

    Chapter  Google Scholar 

  13. Bonnetain, X., Jaques, S.: Quantum period finding against symmetric primitives in practice. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1) (2021)

    Google Scholar 

  14. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 492–519. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_20

    Chapter  Google Scholar 

  15. Bonnetain, X., Schrottenloher, A., Sibleyras, F.: Beyond quadratic speedups in quantum attacks on symmetric schemes. IACR Cryptology ePrint Archive, p. 1348 (2021)

    Google Scholar 

  16. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

  17. Cid, C., Hosoyamada, A., Liu, Y., Sim, S.M.: Quantum cryptanalysis on contracting Feistel structures and observation on related-key settings. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 373–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_17

    Chapter  Google Scholar 

  18. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_46

    Chapter  Google Scholar 

  19. Dinur, I.: Cryptanalytic time-memory-data tradeoffs for FX-constructions with applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 231–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_10

    Chapter  Google Scholar 

  20. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on 3-round Even-Mansour, 8-step LED-128, and Full AES2. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_18

    Chapter  Google Scholar 

  21. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of iterated Even-Mansour schemes with two keys. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 439–457. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_23

    Chapter  Google Scholar 

  22. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the Even-Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_21

    Chapter  MATH  Google Scholar 

  23. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. J. Cryptol. 10(3), 151–161 (1997). https://doi.org/10.1007/s001459900025

    Article  MathSciNet  MATH  Google Scholar 

  24. Gaži, P., Lee, J., Seurin, Y., Steinberger, J., Tessaro, S.: Relaxing full-codebook security: a refined analysis of key-length extension schemes. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 319–341. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_16

    Chapter  Google Scholar 

  25. Gaži, P., Tessaro, S.: Efficient and optimally secure key-length extension for block ciphers via randomized cascading. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 63–80. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_6

    Chapter  Google Scholar 

  26. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC, pp. 212–219. ACM (1996)

    Google Scholar 

  27. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_22

    Chapter  Google Scholar 

  28. Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with online classical queries and offline quantum computations. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 198–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_11

    Chapter  Google Scholar 

  29. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic feistel constructions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_21

    Chapter  Google Scholar 

  30. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_10

    Chapter  Google Scholar 

  31. ISO Central Secretary: Information technology - Security techniques - Message Authentication Codes (MACs) - Part 1: Mechanisms using a block cipher. Standard ISO/IEC 9797–1:2011, International Organization for Standardization, Geneva, CH, March 2011. https://www.iso.org/standard/50375.html

  32. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-ciphertext attacks against feistel ciphers. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 391–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_20

    Chapter  Google Scholar 

  33. Jaeger, J., Song, F., Tessaro, S.: Quantum key-length extension. CoRR abs/2105.01242 (2021)

    Google Scholar 

  34. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8

    Chapter  Google Scholar 

  35. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

    Article  Google Scholar 

  36. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_20

    Chapter  Google Scholar 

  37. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an analysis of DESX). J. Cryptol. 14(1), 17–35 (2001)

    Article  MathSciNet  Google Scholar 

  38. Knill, E.: An analysis of bennett’s pebble game. CoRR abs/math/9508218 (1995)

    Google Scholar 

  39. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round feistel cipher and the random permutation. In: ISIT, pp. 2682–2685. IEEE (2010)

    Google Scholar 

  40. Kuwakado, H., Morii, M.: Security on the quantum-type even-mansour cipher. In: ISITA, pp. 312–316. IEEE (2012)

    Google Scholar 

  41. Leander, G., May, A.: Grover meets simon – quantumly attacking the FX-construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_6

    Chapter  Google Scholar 

  42. Levin, R.Y., Sherman, A.T.: A note on Bennett’s time-space tradeoff for reversible computation. SIAM J. Comput. 19(4), 673–677 (1990)

    Article  MathSciNet  Google Scholar 

  43. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)

    Article  MathSciNet  Google Scholar 

  44. National Academies of Sciences: Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC (2018)

    Google Scholar 

  45. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

    Google Scholar 

  46. Sherstov, A.A., Storozhenko, A.A., Wu, P.: An optimal separation of randomized and quantum query complexity. In: STOC, pp. 1289–1302. ACM (2021)

    Google Scholar 

  47. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: FOCS, pp. 124–134. IEEE Computer Society (1994)

    Google Scholar 

  48. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  Google Scholar 

  49. Song, F., Yun, A.: Quantum security of NMAC and related constructions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 283–309. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_10

    Chapter  Google Scholar 

  50. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4), 2746 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schrottenloher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonnetain, X., Schrottenloher, A., Sibleyras, F. (2022). Beyond Quadratic Speedups in Quantum Attacks on Symmetric Schemes. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham. https://doi.org/10.1007/978-3-031-07082-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07082-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07081-5

  • Online ISBN: 978-3-031-07082-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics