Skip to main content

Development of a Numerical 3D Model for Analyzing Clinched Joints in Versatile Process Chains

  • Conference paper
  • First Online:
NUMISHEET 2022

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The application of the mechanical joining process clinching enables the joining of sheet metals with a wide range of material-thickness configurations, which is of interest in lightweight construction of multi-material structures. Each material-thickness combination results in a joint with its own property profile that is affected differently by variations. Manufacturing process-related effects from preforming steps influence the geometric shape of a clinched joint as well as its load-bearing capacity. During the clinching process high degrees of plastic strain, increased temperatures and high strain rates occur. In this context, a 3D numerical model was developed which can represent the material-specific behaviour during the process chain steps sheet metal forming, joining, and loading phase in order to achieve a high predictive accuracy of the simulation. Besides to the investigation of the prediction accuracy, the extent of the influence of individual modelling aspects such as temperature and strain rate dependency is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meschut G, Janzen V, Olfermann T (2014) Innovative and highly productive joining technologies for multi-material lightweight car body structures. J Mater Eng Perform 23:1515–1523. https://doi.org/10.1007/s11665-014-0962-3

    Article  CAS  Google Scholar 

  2. Deutscher Verband für Schweißen und Verwandte Verfahren (2009) Taschenbuch DVS-Merkblätter und -Richtlinien, Mechanisches Fügen. Fachbuchreihe Schweißtechnik, vol 153. DVS-Verl., Düsseldorf

    Google Scholar 

  3. Varis JP, Lepistö J (2003) A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters. Thin-Walled Struct 41:691–709. https://doi.org/10.1016/S0263-8231(03)00026-0

    Article  Google Scholar 

  4. Coppieters S, Lava P, Baes S et al (2012) Analytical method to predict the pull-out strength of clinched connections. Thin-Walled Struct 52:42–52. https://doi.org/10.1016/j.tws.2011.12.002

    Article  Google Scholar 

  5. Bielak CR, Böhnke M, Beck R et al (2021) Numerical analysis of the robustness of clinching process considering the pre-forming of the parts. J Adv Join Process 3:100038. https://doi.org/10.1016/j.jajp.2020.100038

    Article  Google Scholar 

  6. Bielak CR, Böhnke M, Bobbert M et al (2021) Further development of a numerical method for analyzing the load capacity of clinched joints in versatile process chains. ESAFORM 2021. https://doi.org/10.25518/esaform21.4298

  7. Hahn O, Kurzok JR (1998) Umformtechnisches FĂĽgen vorverformter Halbzeuge, Als Ms. gedr. Berichte aus dem Laboratorium fĂĽr Werkstoff- und FĂĽgetechnik, vol 37. Shaker, Aachen

    Google Scholar 

  8. Hahn O, Kurzok JR (1998) Umformtechnisches FĂĽgen vorverformter Halbzeuge, Als Ms. gedr. Berichte aus dem Laboratorium fĂĽr Werkstoff- und FĂĽgetechnik, vol 38. Shaker, Aachen

    Google Scholar 

  9. Ge Y, Xia Y (2019) Dynamic behavior of self-piercing riveted and mechanical clinched joints of dissimilar materials: an experimental comparative investigation. Adv Mater Sci Eng 2019:1–12. https://doi.org/10.1155/2019/6463576

    Article  CAS  Google Scholar 

  10. Ge Y, Xia Y (2020) Mechanical characterization of a steel-aluminum clinched joint under impact loading. Thin-Walled Struct 151:106759. https://doi.org/10.1016/j.tws.2020.106759

    Article  Google Scholar 

  11. Härtel S, Graf M, Gerstmann T et al (2017) Heat generation during mechanical joining processes—by the example of flat-clinching. Proc Eng 184:251–265. https://doi.org/10.1016/j.proeng.2017.04.093

    Article  Google Scholar 

  12. Böhnke M, Kappe F, Bobbert M et al (2021) Influence of various procedures for the determination of flow curves on the predictive accuracy of numerical simulations for mechanical joining processes. Mater Test 63:493–500. https://doi.org/10.1515/mt-2020-0082

    Article  CAS  Google Scholar 

  13. DIN EN ISO 50106: Testing of Metallic materials—compression test at room temperature

    Google Scholar 

  14. The determination of the mechanical properties of sheet metal at high strain rates in high-speed tensile tests (2006) Stahlinstitut VDEh - Unterausschuss PrĂĽftechnik

    Google Scholar 

  15. Böhme W, Luke M, Blauel JG, Dong-Zhi S, Rohr I, Harwick W (2007) Dynamic material characteristics for crash simulation. FAT-Publications 211

    Google Scholar 

  16. Livermore Software Technology Corporation (2019) LS_DYNA manual II

    Google Scholar 

  17. Böhnke M, Rossel M, Bielak CR et al (2022) Concept development of a method for identifying friction coefficients for the numerical simulation of clinching processes. Int J Adv Manuf Technol 118:1627–1639. https://doi.org/10.1007/s00170-021-07986-4

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft, DFG, TRR 285—project number 418701707. Responsibility for the content of the report lies with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Bielak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bielak, C.R., Böhnke, M., Bobbert, M., Meschut, G. (2022). Development of a Numerical 3D Model for Analyzing Clinched Joints in Versatile Process Chains. In: Inal, K., Levesque, J., Worswick, M., Butcher, C. (eds) NUMISHEET 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-06212-4_15

Download citation

Publish with us

Policies and ethics