Skip to main content

A Teacher Training Course on Using Digital Media for Acquisition, Visualization and 3D Printing of Complex Data and for Fostering Pupils’ Experimental Skills

  • Chapter
  • First Online:
Physics Teacher Education

Abstract

In a newly designed course on special questions about multimedia in physics teaching and learning, multicoding, multiple and multimodal (haptovisual) representations of complex measurement data are created (for example, by 3D printing). In addition, the pre-service teachers in this seminar design interactive learning and working materials for pupils. The focus is on selecting, providing and using different task formats and visualizations in a way that is appropriate for the target group. The results of the accompanying pilot study show effective knowledge acquisition, especially in TPACK. Furthermore, the participants were able to implement the acquired learning content in the design of pupil-oriented, inquiry-based learning environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altherr S, Wagner A, Eckert B, Jodl HJ (2003) Multimedia material for teaching physics (search, evaluation and examples). Eur J Phys 25:7–14. https://doi.org/10.1088/0143-0807/25/1/002

    Article  Google Scholar 

  • Assante D, Cennamo GM, Placidi L (2020) 3D Printing in education: an European perspective. In: Cardoso A, Alves GR, Restivo T (eds) Proceedings of the 2020 IEEE global engineering education conference (EDUCON), 27–30 April, 2020, Porto, Portugal. IEEE, Piscataway, New Jersey, pp 1133–1138. https://doi.org/10.1109/EDUCON45650.2020

  • Auer ME, Azad AK, Edwards A, de Jong T (2018) Cyber-physical laboratories in engineering and science education. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-76935-6

  • Becker S, Bruckermann T, Finger A et al (2020) Orientierungsrahmen Digitale Kompetenzen Lehramtsstudierender der Naturwissenschaften – DiKoLAN. In: Becker S, Messinger-Koppelt J, Thyssen C (eds) Digitale Basiskompetenzen: Orientierungshilfe und Praxisbeispiele für die universitäre Lehramtsausbildung in den Naturwissenschaften. Joachim Herz Stiftung, Hamburg, pp 14–43

    Google Scholar 

  • Carrillo C, Flores MA (2020) COVID-19 and teacher education: a literature review of online teaching and learning practices. Eur J Teach Educ 43:466–487. https://doi.org/10.1080/02619768.2020.1821184

    Article  Google Scholar 

  • Dȩbowska E, Girwidz R, Greczyło T et al (2013) Report and recommendations on multimedia materials for teaching and learning electricity and magnetism. Eur J Phys 34:L47–L54. https://doi.org/10.1088/0143-0807/34/3/L47

  • Fernández-Batanero JM, Montenegro-Rueda M, Fernández-Cerero J, García-Martínez I (2020) Digital competences for teacher professional development. Systematic review. Eur J Teacher Educ 1–19. https://doi.org/10.1080/02619768.2020.1827389

  • Girwidz R, Hoyer C (2018) Didaktische Aspekte zum Einsatz digitaler Medien – Leitlinien zum Lehren mit Multimedia, veranschaulicht an Beispielen. In: Meßinger-Koppelt J, Maxton-Küchenmeister J (eds) Naturwissenschaften digital: Toolbox für den Unterricht. Joachim Herz Stiftung Verlag, Hamburg, pp 6–23

    Google Scholar 

  • Girwidz R, Thoms L-J, Pol H, López V, Michelini M, Stefanel A, Greczyło T, Müller A, Gregorcic B, Hömöstrei M (2019a) Int J Sci Educ 25:1–26

    Google Scholar 

  • Girwidz R, Thoms L-J, Pol H et al (2019b) Physics teaching and learning with multimedia applications: a review of teacher-oriented literature in 34 local language journals from 2006 to 2015. Int J Sci Educ 25:1–26. https://doi.org/10.1080/09500693.2019.1597313

    Article  Google Scholar 

  • Girwidz R, Watzka B (eds) (2018) Arduino, Raspberry Pi & Co (Naturwissenschaften im Unterricht Physik, 167). Friedrich, Seelze

    Google Scholar 

  • Heradio R, de La Torre L, Galan D, Cabrerizo FJ, Herrera-Viedma E, Dormido S (2016) Virtual and remote labs in education: a bibliometric analysis. Comput Educ 98:14–38. https://doi.org/10.1016/j.compedu.2016.03.010

  • Hoyer C, Girwidz R (2018) A remote lab for measuring, visualizing and analysing the field of a cylindrical permanent magnet. Eur J Phys 39:65808. https://doi.org/10.1088/1361-6404/aae35a

    Article  Google Scholar 

  • Hoyer C, Thoms L-J, Girwidz R (2020) Lehren mit Multimedia, Fernlaboren und 3D-Druck im Physikunterricht. In: Habig S (ed) Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Universität Duisburg-Essen, Essen, pp 979–982

    Google Scholar 

  • Hoyer C, Girwidz R (2020) Animation and interactivity in computer-based physics experiments to support the documentation of measured vector quantities in diagrams: an eye tracking study. Phys Rev Phys Educ Res 16. https://doi.org/10.1103/PhysRevPhysEducRes.16.020124

  • http://did.physik.lmu.de/sims/magneticfield/index_de.html

  • http://myrcl.net

  • http://rcl-munich.informatik.unibw-muenchen.de/

  • Koehler MJ, Mishra P, Cain W (2013) What is technological pedagogical content knowledge (TPACK)? J Educ 193:13–19. https://doi.org/10.1177/002205741319300303

    Article  Google Scholar 

  • Kotzebue L von, Meier M, Finger A, Kremser E, Huwer J, Thoms LJ, Becker S, Bruckermann T, Thyssen C (2021) The Framework DiKoLAN (Digital Competencies for Teaching in Science Education) as Basis for the Self-Assessment Tool DiKoLAN-Grid. Educ Sci 11:775. https://doi.org/10.3390/educsci11120775

    Article  Google Scholar 

  • Maletić S, Ivančev-Tumbas I, Brossas A et al (2021) Overview of Erasmus+ NETCHEM project: ICT networking for overcoming technical and social barriers in instrumental analytical chemistry education. Environ Sci Pollut Res Int 28:2479–2483. https://doi.org/10.1007/s11356-020-11506-4

    Article  Google Scholar 

  • Mayer RE (ed) (2014). The Cambridge handbook of multimedia learning. Cambridge University Press, New York. https://doi.org/10.1017/CBO9781139547369

  • Mayer P, Girwidz R (2019) Physics teachers’ acceptance of multimedia applications—adaptation of the technology acceptance model to investigate the influence of TPACK on physics teachers’ acceptance behavior of multimedia applications. Front Educ 4:73. https://doi.org/10.3389/feduc.2019.00073

    Article  Google Scholar 

  • Persano Adorno D, Pizzolato N (2020) Teacher professional development in the context of the “Open Discovery of STEM laboratories” project: is the MOOC methodology suitable for teaching physics? J Phys: Conf Ser 1512:12030. https://doi.org/10.1088/1742-6596/1512/1/012030

    Article  Google Scholar 

  • Schnotz W, Bannert M (2003) Construction and interference in learning from multiple representation. Learn Instr 13:141–156. https://doi.org/10.1016/S0959-4752(02)00017-8

    Article  Google Scholar 

  • Sweller J (2010) Element interactivity and intrinsic, extraneous, and germane cognitive load. Educ Psychol Rev 22:123–138. https://doi.org/10.1007/s10648-010-9128-5

    Article  Google Scholar 

  • Thoms L-J, Girwidz R (2015) Training and assessment of experimental competencies from a distance: optical spectrometry via the Internet. Il Nuovo Cimento C 38:1–10. https://doi.org/10.1393/ncc/i2015-15113-3

    Article  Google Scholar 

  • Thoms L-J, Girwidz R (2017) Virtual and remote experiments for radiometric and photometric measurements. Eur J Phys 38:55301–55324. https://doi.org/10.1088/1361-6404/aa754f

    Article  Google Scholar 

  • Thoms L-J, Hoyer C, Girwidz R (2020b) Mit digitalen Medien experimentelle Kompetenzen fördern und komplexe Datenauswertungen schulen. In: Becker S, Messinger-Koppelt J, Thyssen C (eds) Digitale Basiskompetenzen: Orientierungshilfe und Praxisbeispiele für die universitäre Lehramtsausbildung in den Naturwissenschaften. Joachim Herz Stiftung, Hamburg, pp 111–114

    Google Scholar 

  • Thoms L-J, Hoyer C, Girwidz R (2020) Digitale Basiskompetenzen: Orientierungshilfe und Praxisbeispiele für die universitäre Lehramtsausbildung in den Naturwissenschaften (Becker S, Messinger-Koppelt J, Thyssen C (eds)). Joachim Herz Stiftung, Hamburg, pp 111–114

    Google Scholar 

  • Thyssen C, Thoms L-J, Kremser E, Finger A, Huwer J, Becker S (2020) Digitale Basiskompetenzen in der Lehrerbildung unter besonderer Berücksichtigung der Naturwissenschaften. In: Beißwenger M, Bulizek B, Gryl I, Schacht F (eds) Digitale Innovationen und Kompetenzen in der Lehramtsausbildung. Universitätsverlag Rhein-Ruhr, pp 77–98. https://doi.org/10.17185/duepublico/73330

Download references

Acknowledgements

We would like to thank the Joachim Herz Foundation for accepting us into the Kolleg Didaktik: digital and for the associated support for our teaching project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Jochen Thoms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thoms, LJ., Hoyer, C., Girwidz, R. (2022). A Teacher Training Course on Using Digital Media for Acquisition, Visualization and 3D Printing of Complex Data and for Fostering Pupils’ Experimental Skills. In: Borg Marks, J., Galea, P., Gatt, S., Sands, D. (eds) Physics Teacher Education. Challenges in Physics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-06193-6_6

Download citation

Publish with us

Policies and ethics