Skip to main content

MXenes for Electromagnetic Interference (EMI) Shielding

  • Chapter
  • First Online:
Fundamental Aspects and Perspectives of MXenes

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

With the rapid advancement of science and technology, mobile devices are becoming increasingly popular among people, accompanied by an increase in the severity of electromagnetic (EM) radiation pollution. Recently, MXene, as a new-born family of two-dimensional nanomaterials, has been applied in energy conversion, energy storage, sensors, catalysis, medical therapy, and electromagnetic interference (EMI) shielding and other fields due to its outstanding conductivity, hydrophilicity, tunable surface chemistry, large specific area, and high photothermal effect. Since the first report on EMI shielding of Ti3C2Tx in 2016, numerous works have been devoted to designing MXene-based EMI shielding materials. This chapter aims at highlighting the recent trends and advancements in this area. In the chapter, we introduce the EMI, discuss the mechanism of EMI shielding, present the characteristics of MXene-based EMI shielding materials, review the role of carbides and nitrides in EMI shielding and finally provide an insight into future works. In addition, this chapter provides an overview of different advanced materials, devices, and futuristic applications of MXenes for EMI shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, D., Murugadoss, V., Wang, Y., et al.: Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59, 280–337 (2019)

    Article  CAS  Google Scholar 

  2. Singh, A.K., Shishkin, A., Koppel, T., Gupta, N.: A review of porous lightweight composite materials for electromagnetic interference shielding. Comp. Part B-Eng. 149, 188–197 (2018)

    Article  CAS  Google Scholar 

  3. Wan, Y.J., Zhu, P.L., Yu, S.H., et al.: Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon 122, 74–81 (2017)

    Article  CAS  Google Scholar 

  4. Sankaran, S., Deshmukh, K., Ahamed, M.B., Pasha, S.K.K.: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Comp. Part A-Appl. Sci. Manuf. 114, 49–71 (2018)

    Article  CAS  Google Scholar 

  5. Christ, A., Douglas, M., Nadakuduti, J., Kuster, N.: Assessing human exposure to electromagnetic fields from wireless power transmission systems. Proc. IEEE 101, 1482–1493 (2013)

    Article  Google Scholar 

  6. Shi, Y.D., Yu, H.O., Li, J., et al.: Low magnetic field-induced alignment of nickel particles in segregated poly (L-Lactide)/Poly(Epsilon-Caprolactone)/multi-walled carbon nanotube nanocomposites: towards remarkable and tunable conductive anisotropy. Chem. Eng. J. 347, 472–482 (2018)

    Article  CAS  Google Scholar 

  7. Wanasinghe, D., Aslani, F.: A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Comp. Part B-Eng. 176, 107207 (2019)

    Article  CAS  Google Scholar 

  8. Li, Y., Feng, Z., Huang, L., et al.: Additive manufacturing high performance graphene-based composites: a review. Comp. Part A-Appl. Sci. Manuf. 124, 105483 (2019)

    Article  CAS  Google Scholar 

  9. Prather, W.D., Baum, C.E., Torres, R.J., et al.: Survey of worldwide high-power wideband capabilities. IEEE Trans. Electromagn. Compat. 46, 335–344 (2004)

    Article  Google Scholar 

  10. Iqbal, A., Sambyal, P., Koo, C.M.: 2D MXenes for electromagnetic shielding: a review. Adv. Func. Mater. 30, 2000883 (2020)

    Article  CAS  Google Scholar 

  11. Lin, B., Yuen, A.C.Y., Li, A., et al.: MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J. Hazard. Mater. 381, 120952 (2020)

    Article  CAS  Google Scholar 

  12. Li, H., Liang, J.: Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv. Mater. 32, 1805864 (2020)

    Article  CAS  Google Scholar 

  13. Naguib, M., Mashtalir, O., Carle, J., et al.: Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012)

    Article  CAS  Google Scholar 

  14. Zang, X., Wang, J., Qin, Y., et al.: Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020)

    Article  CAS  Google Scholar 

  15. Wang, Y., Wang, X., Li, X., et al.: Intercalating ultrathin MoO3 nanobelts into mxene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices. Nano-Micro Lett. 12, 115 (2020)

    Article  CAS  Google Scholar 

  16. Ran, F., Wang, T., Chen, S., et al.: Constructing expanded ion transport channels in flexible mxene film for pseudocapacitive energy storage. Appl. Surf. Sci. 511, 145627 (2020)

    Article  CAS  Google Scholar 

  17. Bu, F., Zagho, M.M., Ibrahim, Y., et al.: Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020)

    Article  CAS  Google Scholar 

  18. Zhao, Q., Zhu, Q., Miao, J., et al.: 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. Nanoscale 11, 8442–8448 (2019)

    Article  CAS  Google Scholar 

  19. Jiao, L., Zhang, C., Geng, C., et al.: Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019)

    Article  CAS  Google Scholar 

  20. Zhan, X., Si, C., Zhou, J., Sun, Z.: MXene and MXene-based composites: synthesis. Prop. Environ. Relat. Appl. Nanoscale Horizons 5, 235–258 (2020)

    Article  CAS  Google Scholar 

  21. Shi, X., Wang, H., Xie, X., et al.: Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13, 649–659 (2019)

    Article  CAS  Google Scholar 

  22. Liu, J., Jiang, X., Zhang, R., et al.: MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv. Func. Mater. 29, 1807326 (2019)

    Article  CAS  Google Scholar 

  23. Nguyen, V.H., Tabassian, R., Oh, S., et al.: Stimuli-responsive MXene-based actuators. Adv. Func. Mater. 30, 1909504 (2020)

    Article  CAS  Google Scholar 

  24. Wang, J., Liu, Y., Cheng, Z., et al.: Highly conductive MXene film actuator based on moisture gradients. Angewandte Chem. Int. Edit. 59, 14029–14033 (2020)

    Article  CAS  Google Scholar 

  25. Lao, J., Wu, S., Gao, J., et al.: Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy 70, 104481 (2020)

    Article  CAS  Google Scholar 

  26. Tu, S., Jiang, Q., Zhang, J., et al.: Enhancement of dielectric permittivity of Ti3C2Tx, MXene/polymer composites by controlling flake size and surface termination. ACS Appl. Mater. Interf. 11, 27358–27362 (2019)

    Article  CAS  Google Scholar 

  27. Jiang, Q., Wu, C., Wang, Z., et al.: MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy 45, 266–272 (2018)

    Article  CAS  Google Scholar 

  28. Ma, C., Yuan, Q., Du, H., et al.: Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Appl. Mater. Interf. 12, 34226–34234 (2020)

    Article  CAS  Google Scholar 

  29. Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y.: 25th anniversary article: mxenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)

    Article  CAS  Google Scholar 

  30. Shahzad, F., Alhabeb, M., Hatter, C.B., et al.: Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016)

    Article  CAS  Google Scholar 

  31. Ma, C., Cao, W.T., Zhang, W., et al.: Wearable, ultrathin and transparent bacterial celluloses/MXene film with janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 403, 126438 (2021)

    Article  CAS  Google Scholar 

  32. Gong, S., Zhu, Z.H., Arjmand, M., et al.: Effect of carbon nanotubes on electromagnetic interference shielding of carbon fiber reinforced polymer composites. Polym. Compos. 39, E655–E663 (2018)

    Article  CAS  Google Scholar 

  33. Sawai, P., Chattopadhaya, P.P., Banerjee, S.: Synthesized reduce graphene oxide (rGO) filled polyetherimide based nanocomposites for EMI shielding applications. Mater. Today-Proc. 5, 9989–9999 (2018)

    Article  CAS  Google Scholar 

  34. Wang, X.X., Shu, J.C., Cao, W.Q., et al.: Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019)

    Article  CAS  Google Scholar 

  35. Jagatheesan, K., Ramasamy, A., Das, A., Basu, A.: Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites. Smart Mater. Struct. 27, 025004 (2018)

    Article  Google Scholar 

  36. Lai, H., Singh, N.P.: Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 69, 513–521 (1996)

    Article  CAS  Google Scholar 

  37. Zhang, J., Sumich, A., Wang, G.Y.: Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function. Bioelectromagnetics 38, 329–338 (2017)

    Article  Google Scholar 

  38. Joshi, A., Datar, S.: Carbon nanostructure composite for electromagnetic interference shielding. Pramana J. Phys. 84, 1099–1116 (2015)

    Article  CAS  Google Scholar 

  39. Nam, Y.W., Kumar, S.K.S., Ankem, V.A., Kim, C.G.: Multi-functional aramid/epoxy composite for stealth space hypervelocity impact shielding system. Compos. Struct. 193, 113–120 (2018)

    Article  Google Scholar 

  40. Gupta, S., Tai, N.H.: Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159–187 (2019)

    Article  CAS  Google Scholar 

  41. Fano, U.: Atomic theory of electromagnetic interactions in dense materials. Phys. Rev. 103, 1202–1218 (1956)

    Article  CAS  Google Scholar 

  42. Liehr, A.D.: Interaction of electromagnetic radiation with matter .I. Theory of optical rotatory power-topic B. Digonal dihedral compounds compounds of lower symmetry. J. Phys. Chem. 68, 3629 (1964)

    Google Scholar 

  43. Erdogan, M.K., Karakisla, M., Sacak, M.: Polypyrrole and silver particles coated poly(Ethylene Terephthalate) nonwoven composite for electromagnetic interference shielding. J. Compos Mater. 52, 1353–1362 (2018)

    Article  CAS  Google Scholar 

  44. Al-Saleh, M.H., Saadeh, W.H., Sundararaj, U.: EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)

    Article  CAS  Google Scholar 

  45. Song, Q., Ye, F., Yin, X., et al.: Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017)

    Article  CAS  Google Scholar 

  46. Zeng, Z., Jiang, F., Yue, Y., et al.: Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, 1908496 (2020)

    Article  CAS  Google Scholar 

  47. Kumar, P., Maiti, U.N., Sikdar, A., et al.: Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym. Rev. 59, 687–738 (2019)

    Article  CAS  Google Scholar 

  48. Dhawan, R., Kumar, R., Chaudhary, A., et al.: Investigation on pitch derived mesocarbon spheres based metal composites for highly efficient electromagnetic interference shielding. Comp. Part B-Eng. 175, 107168 (2019)

    Article  CAS  Google Scholar 

  49. Lim, G.H., Woo, S., Lee, H., et al.: Mechanically robust magnetic carbon nanotube papers prepared with CoFe2O4 nanoparticles for electromagnetic interference shielding and magnetomechanical actuation. ACS Appl. Mater. Interf. 9, 40628–40637 (2017)

    Article  CAS  Google Scholar 

  50. Pan, T., Zhang, Y., Wang, C., et al.: Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Compos. Sci. Technol. 188, 107991 (2020)

    Article  CAS  Google Scholar 

  51. Gahlout, P., Choudhary, V.: Microwave shielding behaviour of polypyrrole impregnated fabrics. Comp. Part B-Eng. 175, 107093 (2019)

    Article  CAS  Google Scholar 

  52. Zhao, X., Lv, L., Pan, B., et al.: Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 170, 381–394 (2011)

    Article  CAS  Google Scholar 

  53. Lin, S., Liu, J., Wang, Q., et al.: Highly robust, flexible, and large-scale 3d-metallized sponge for high-performance electromagnetic interference shielding. Adv. Mater. Technol. 5, 1900761 (2020)

    Article  CAS  Google Scholar 

  54. Gupta, S., Sharma, S.K., Pradhan, D., Tai, N.H.: Ultra-light 3D reduced graphene oxide aerogels decorated with cobalt ferrite and zinc oxide perform excellent electromagnetic interference shielding effectiveness. Comp. Part A-Appl. Sci. Manuf. 123, 232–241 (2019)

    Article  CAS  Google Scholar 

  55. Wang, L., Wu, Y., Wang, Y., et al.: Laterally compressed graphene foam/acrylonitrile butadiene styrene composites for electromagnetic interference shielding. Comp. Part A-Appl. Sci. Manuf. 133, 105887 (2020)

    Article  CAS  Google Scholar 

  56. Chen, Y., Poetschke, P., Pionteck, J., et al.: Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interf. 12, 22088–22098 (2020)

    Article  CAS  Google Scholar 

  57. Lecocq, H., Garois, N., Lhost, O., et al.: Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: properties and modeling. Comp. Part B-Eng. 189, 107866 (2020)

    Article  CAS  Google Scholar 

  58. Wang, T., Yu, W.C., Zhou, C.G., et al.: Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Comp. Part B-Eng. 193, 108015 (2020)

    Article  CAS  Google Scholar 

  59. Feng, D., Liu, P., Wang, Q.: Selective microwave sintering to prepare multifunctional Poly(Ether Imide) bead foams based on segregated carbon nanotube conductive network. Ind. Eng. Chem. Res. 59, 5838–5847 (2020)

    Article  CAS  Google Scholar 

  60. He, M., Xu, P., Zhang, Y., et al.: Phthalocyanine nanowires@GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance. Chem. Eng. J. 388, 124255 (2020)

    Article  CAS  Google Scholar 

  61. Lee, J., Liu, Y., Liu, Y., et al.: Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C 5, 7853–7861 (2017)

    Article  CAS  Google Scholar 

  62. Li, Y.M., Deng, C., Zhao, Z.Y., et al.: Carbon fiber-based polymer composite via ceramization toward excellent electromagnetic interference shielding performance and high temperature resistance. Comp. Part A-Appl. Sci. Manuf. 131, 105769 (2020)

    Article  CAS  Google Scholar 

  63. Jung, S., Cho, D.: Effect of fiber feeding route upon extrusion process on the electromagnetic, mechanical, and thermal properties of nickel-coated carbon fiber/polypropylene composites. Comp. Part B-Eng. 187, 107861 (2020)

    Article  CAS  Google Scholar 

  64. Zhou, T., Xu, C., Liu, H., et al.: Second time-scale synthesis of high-quality graphite films by quenching for effective electromagnetic interference shielding. ACS Nano 14, 3121–3128 (2020)

    Article  CAS  Google Scholar 

  65. Guan, H., Chung, D.D.L.: Radio-wave electrical conductivity and absorption-dominant interaction with radio wave of exfoliated-graphite-based flexible graphite, with relevance to electromagnetic shielding and antennas. Carbon 157, 549–562 (2020)

    Article  CAS  Google Scholar 

  66. Ju, J., Kuang, T., Ke, X., et al.: Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 193, 108116 (2020)

    Article  CAS  Google Scholar 

  67. Yang, R., Gui, X., Yao, L., et al.: Ultrathin, lightweight, and flexible cnt buckypaper enhanced using mxenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021)

    Article  CAS  Google Scholar 

  68. Cao, W.T., Chen, F.F., Zhu, Y.J., et al.: Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018)

    Article  CAS  Google Scholar 

  69. Wei, H., Wang, M., Zheng, W., et al.: 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 46, 6199–6204 (2020)

    Article  CAS  Google Scholar 

  70. Liu, J., Liu, Z., Zhang, H.B., et al.: Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 1901094 (2020)

    Article  CAS  Google Scholar 

  71. Cao, W., Ma, C., Tan, S., et al.: Ultrathin and Flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019)

    Article  CAS  Google Scholar 

  72. Zhou, B., Zhang, Z., Li, Y., et al.: Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and mxene layers. ACS Appl. Mater. Interf. 12, 4895–4905 (2020)

    Article  CAS  Google Scholar 

  73. Miao, M., Liu, R., Thaiboonrod, S., et al.: Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J. Mater. Chem. C 8, 3120–3126 (2020)

    Article  CAS  Google Scholar 

  74. Zhang, Y., Wang, L., Zhang, J., et al.: Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/Co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 183, 107833 (2019)

    Article  CAS  Google Scholar 

  75. Liu, R., Miao, M., Li, Y., et al.: Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interf. 10, 44787–44795 (2018)

    Article  CAS  Google Scholar 

  76. De, S., Lyons, P.E., Sorel, S., et al.: Transparent, flexible, and highly conductive thin films based on polymer–nanotube composites. ACS Nano 3, 714–720 (2009)

    Article  CAS  Google Scholar 

  77. Weng, G.M., Li, J., Alhabeb, M., et al.: Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Func. Mater. 28, 1803360 (2018)

    Article  CAS  Google Scholar 

  78. Sundaram, H.S., Han, X., Nowinski, A.K., et al.: One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces. ACS Appl. Mater. Interf. 6, 6664–6671 (2014)

    Article  CAS  Google Scholar 

  79. Jin, X.X., Wang, J.F., Dai, L.Z., et al.: Flame-retardant Poly(Vinyl Alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380(9), 122475 (2020)

    Article  CAS  Google Scholar 

  80. Wang, S.J., Li, D.S., Jiang, L.: Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interf. 6, 1900961 (2019)

    Article  CAS  Google Scholar 

  81. Ma, C., Liu, T., Xin, W., et al.: Breathable and wearable mxene-decorated air-laid paper with superior folding endurance and electromagnetic interference-shielding performances. Front. Mater. 6, 308 (2019)

    Article  Google Scholar 

  82. Wang, Q.W., Zhang, H.B., Liu, J., et al.: Multifunctional and water-resistant Mxene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Func. Mater. 29, 1806819 (2019)

    Article  CAS  Google Scholar 

  83. Liu, L.X., Chen, W., Zhang, H.B., et al.: Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Func. Mater. 29, 1905197 (2019)

    Article  CAS  Google Scholar 

  84. Liu, J., Zhang, H.B., Sun, R., et al.: Hydrophobic, flexible, and lightweight Mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017)

    Article  CAS  Google Scholar 

  85. Han, M., Yin, X., Hantanasirisakul, K., et al.: Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Optic. Mater. 7, 1900267 (2019)

    Article  CAS  Google Scholar 

  86. Wu, X., Han, B., Zhang, H.-B., et al.: Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020)

    Article  CAS  Google Scholar 

  87. Wang, L., Chen, L., Song, P., et al.: Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Comp. Part B-Eng. 171, 111–118 (2019)

    Article  CAS  Google Scholar 

  88. Liang, L., Han, G., Li, Y., et al.: Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interf. 11, 25399–25409 (2019)

    Article  CAS  Google Scholar 

  89. Li, X., Yin, X., Liang, S., et al.: 2D Carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019)

    Article  CAS  Google Scholar 

  90. Sun, R., Zhang, H.-B., Liu, J., et al.: Highly conductive transition metal carbide/carbonitride(Mxene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Func. Mater. 27, 1702807 (2017)

    Article  CAS  Google Scholar 

  91. Luo, J.Q., Zhao, S., Zhang, H.B., et al.: Flexible, stretchable and electrically conductive Mxene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019)

    Article  CAS  Google Scholar 

  92. Wang, L., Qiu, H., Song, P., et al.: 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Comp. Part A-Appl. Sci. Manuf. 123, 293–300 (2019)

    Article  CAS  Google Scholar 

  93. Zhou, Z., Liu, J., Zhang, X., et al.: Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interf. 6, 1802040 (2019)

    Article  CAS  Google Scholar 

  94. Zheng, X., Hu, Q., Wang, Z., et al.: Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics. J. Colloid Interf. Sci. 602, 680 (2021)

    Article  CAS  Google Scholar 

  95. Hu, S., Li, S., Xu, W., et al.: Core@shell and sandwich-like Ti3C2Tx@Ni particles with enhanced electromagnetic interference shielding performance. Ceram. Int. 47(21), 29995 (2021)

    Article  CAS  Google Scholar 

  96. Wang, Z., Han, X., Zhou, Z., et al.: Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Comp. Sci. Techol. 213(8), 108931 (2021)

    Article  CAS  Google Scholar 

  97. Wei, X., Ma, M.G., Chen, F.: Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding. ACS Appl. Nano Mater. 4, 7234–7243 (2021)

    Google Scholar 

  98. Lu, Z., Jia, F., Zhuo, L., et al.: Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Comp. Part B-Eng. 217(15), 108853 (2021)

    Article  CAS  Google Scholar 

  99. Han, M.K., Shuck, C.E., Rakhmanov, R., et al.: Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020)

    Article  CAS  Google Scholar 

  100. Iqbal, A., Shahzad, F., Hantanasirisakul, K., et al.: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Key R&D Program of China (2019YFC1905901), the Beijing Forestry University Outstanding Young Talent Cultivation Project (2019JQ03014), and the Key Production Innovative Development Plan of the Southern Bingtuan (2019DB007) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, C., Yuan, Q., Ma, MG. (2022). MXenes for Electromagnetic Interference (EMI) Shielding. In: Khalid, M., Grace, A.N., Arulraj, A., Numan, A. (eds) Fundamental Aspects and Perspectives of MXenes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-05006-0_9

Download citation

Publish with us

Policies and ethics