Skip to main content

Explaining Local Path Plans Using LIME

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 120))

Included in the following conference series:

Abstract

As robots are becoming a more significant part of humans’ daily life, there is a challenge to bridge the gap between robots’ actions and humans’ understanding of what robots are doing and how they make their decisions. We present an approach to local navigation explanation based on Local Interpretable Model-agnostic Explanations (LIME), a popular approach from the Explainable Artificial Intelligence (XAI) community for explaining individual predictions of black-box models. We show how LIME can be applied to a robot’s local path planner. We experimentally evaluate the explanation method’s runtime, quality, and robustness, and discuss implications for the robotic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/marcotcr/lime.

  2. 2.

    http://wiki.ros.org/navigation.

  3. 3.

    We used the following SLIC parametrization: n_segments = 10, compactness = 100.0, max_iter = 1000, min_size_factor = 0.01, max_size_factor = 10.

  4. 4.

    All reported runtime experiments run on a Lenovo Thinkpad E14 Gen2 with AMD Ryzen 5 4500U 2.3 GHz and 16 GB of RAM.

References

  1. Lomas, M., Chevalier, R., Cross, E.V., Garrett, R.C., Hoare, J., Kopack, M.: Explaining robot actions. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 187–188 (2012)

    Google Scholar 

  2. Lim, V., Rooksby, M., Cross, E.S.: Social robots on a global stage: establishing a role for culture during human-robot interaction. Int. J. Soc. Robot. 13(6), 1307–1333 (2021)

    Article  Google Scholar 

  3. IEEE. Ethically aligned design, first edition overview – a vision for prioritizing human well-being with autonomous and intelligent systems. In: Technical Report (2019)

    Google Scholar 

  4. Wachter, S., Mittelstadt, B. and Floridi, L.: Transparent, explainable, and accountable AI for robotics. Sci. Robot. 2(6), eaan6080 (2017)

    Google Scholar 

  5. Edmonds, M., et al.: A tale of two explanations: enhancing human trust by explaining robot behavior. Sci. Robot. 4(7), eaay4663 (2019)

    Google Scholar 

  6. Lindner, F.: Towards a formalization of explanations for robots’ actions and beliefs. In: JOWO 2020 Proceedings of the FOIS Workshop Ontologies for Autonomous Robotics (ROBONTICS 2020) (2020)

    Google Scholar 

  7. Karalus, J., Halilovic, A., Lindner, F.: Explanations in, explanations out: human-in-the-loop social navigation learning. In: ICDL Workshop on Human aligned Reinforcement Learning for Autonomous Agents and Robots (2021)

    Google Scholar 

  8. Tolmeijer, S.: Taxonomy of trust-relevant failures and mitigation strategies. In: Proceedings of HRI 2020 (2020)

    Google Scholar 

  9. Ribeiro, M.T., Singh, S. and Guestrin, C.: Why should I trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  10. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  11. Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., Bertram, T.: Trajectory modification considering dynamic constraints of autonomous robots. In: ROBOTIK 2012; 7th German Conference on Robotics, VDE, pp. 1–6 (2012)

    Google Scholar 

  12. Rosenthal, S., Selvaraj, S.P., Veloso, M.M.: Verbalization: narration of autonomous robot experience. In: IJCAI, vol. 16, pp. 862–868 (2016)

    Google Scholar 

  13. Perera, V., Selveraj, S.P., Rosenthal, S., Veloso, M.: Dynamic generation and refinement of robot verbalization. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 212–218 (2016)

    Google Scholar 

  14. Stein, G.: Generating high-quality explanations for navigation in partially-revealed environments. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  15. He, L., Aouf, N., Song, B.: Explainable deep reinforcement learning for UAV autonomous path planning. Aerospace Sci. Technol. 118, 107052 (2021)

    Google Scholar 

  16. Bautista-Montesano, R., Bustamante-Bello, R., Ramirez-Mendoza, R.A.: Explainable navigation system using fuzzy reinforcement learning. Int. J. Interact. Des. Manuf. (IJIDeM) 14(4), 1411–1428 (2020)

    Google Scholar 

  17. Brandao, M., Coles, A., Magazzeni, D.: Explaining path plan optimality: fast explanation methods for navigation meshes using full and incremental inverse optimization. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 31, pp. 56–64 (2021)

    Google Scholar 

  18. Brandao, M., Canal, G., Krivić, S., Magazzeni, D.: Towards providing explanations for robot motion planning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3927-3933. IEEE (2021)

    Google Scholar 

  19. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Patt. Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Halilovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halilovic, A., Lindner, F. (2022). Explaining Local Path Plans Using LIME. In: Müller, A., Brandstötter, M. (eds) Advances in Service and Industrial Robotics. RAAD 2022. Mechanisms and Machine Science, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-031-04870-8_13

Download citation

Publish with us

Policies and ethics