Skip to main content

Genomic Designing for Abiotic Stress Resistant Brassica Vegetable Crops

  • Chapter
  • First Online:
Genomic Designing for Abiotic Stress Resistant Vegetable Crops

Abstract

To meet the challenges of food and nutritional security, there is urgent need to increase production of quality vegetable crops. There are several environmental stresses which affect vegetable crop production and drastically reduce yield and quality of the crops. Abiotic stress triggers a series of changes in plants in respect to gene expression and cellular metabolism. Brassica vegetable crops play an important role in the diversification in cropping system and also in supplying micronutrients and other nutraceuticals. These cool-season crops are highly suffered during present climate change scenario. Thus, there is a need to search genotypes that can tolerate drought and excess water condition. An understanding of genetics and mechanism of stress tolerance will enable the development of suitable varieties for stress condition. Abiotic stress resistant Brassicas with improved agronomical traits can be achieved by combining the traditional methods with the modern biotechnological tools. Different studies on diverse plant groups also support the fact that miRNA entities play a major role during stress regulation and therefore, transgenic approach can be a promising tool for improving plant yield with tolerance to stresses. With the help of NGS based sequencing platforms has elucidated the gene regulatory network of abiotic stress resistance in Brassicaceae crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Hussein SD (2012) Climate change and its impact on the productivity and quality of vegetable crops. J Appl Sci Res 8(8): 4359–4383.

    Google Scholar 

  • Ahmed NU, Jung HJ, Park JI, Cho YG, Hur Y, Nou IS (2015) Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea. Gene 554:215–223

    Google Scholar 

  • Ali A, Yang EM, Lee SY, Chung SM (2013) Evaluation of chloroplast genotypes of Korean cucumber cultivars (Cucumis sativus L.) using sdCAPS Markers related to chilling tolerance. Kor J Hortic Sci Technol 31: 219–223

    Google Scholar 

  • Alter S, Bader KC, Spannagl M, Wang Y, Bauer E, Schon CC, Mayer KF (2015) Drought DB: an expert-curated compilation of plant drought stress genes and their homologs in nine species. Database (Oxford), bav046

    Google Scholar 

  • Alves MS, Dadalto SP, Gonçalves AB, De Souza GB, Barros VA, Fietto LG (2013) Plant bZIP transcription factors responsive to pathogens: a review. Intl J Mol Sci 14:7815–7828

    Google Scholar 

  • Andleeb T, Shah T, Nawaz R, Munir I, Munsif F, Jalal A (2020) QTL mapping for drought stress tolerance in plants. In: Hasanuzzaman M, Tanveer M (eds) Salt and drought stress tolerance in plants. Signaling and communication in plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_16

  • Angadi SV, Cutforth HW, Miller PR, McConkey BG, Entz MH, Brandt SA (2000) Response of three Brassica species to high temperature stress during reproductive growth. Can J Plant Sci 80:693–701

    Google Scholar 

  • Arias T, Niederhuth CE, McSteen P, Pires JC (2021) The molecular basis of kale domestication: transcriptional profiling of developing leaves provides new insights into the evolution of a Brassica oleracea vegetative morphotype. Front Plant Sci 12:109

    Google Scholar 

  • Asghari A, Mohammadi SA, Moghaddam M, Shokuhian AA (2008) Identification of SSR and RAPD markers associated with QTLs of winter survival and related traits in Brassica napus L. African J Biotechnol 7:897–903

    Google Scholar 

  • Ashraf M, Nazir N, McNeilly T (2001) Comparative salt tolerance of amphidiploid and diploid Brassica species. Plant Sci 160:683–689. https://doi.org/10.1016/S0168-9452(00)00449-0

  • Augustine R, Arya GC, Nambiar DM, Kumar R, Bisht NC (2014) Translational genomics in Brassica crops: challenges, progress, and future prospects. Plant Biotechnol Rep 8(2):65–81

    Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker assisted selection in crop breeding-prospects and challenges. Curr Sci 87:607–619

    Google Scholar 

  • Bac-Molenaar JA, Granier C, Keurentjes JJ, Vreugdenhil D (2016) Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis. Plant Cell Environ 39:88–102

    Google Scholar 

  • Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, ToppinoL RGL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304. https://doi.org/10.1186/1471-2164-12-304

  • Bayer PE, Golicz AA, Tirnaz S, Chan CK, Edwards D, Batley J (2018) Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol J 17:789–800. https://doi.org/10.1111/pbi.13015

  • Belser C, Barbe V, Cruaud C, Wincker P, Aury JM (2018) Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plant 4:879–887

    Google Scholar 

  • Blanca J, Esteras C, Ziarsolo P, Pérez D, Ndez-Pedrosa V, Collado C, Pablos R, Ballester A, Roig C, CañizaresJ PB (2012) Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13:280. https://doi.org/10.1186/1471-2164-13-280

  • Borkotoky S, Saravanan V, Jaiswal A, Das B, Selvaraj S, Murali A, Lakshmi PTV (2013) The arabidopsis stress responsive gene database. Intl J Plant Genom 949564

    Google Scholar 

  • Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape (Brassica napus). Plant Physiology 174(2):935–942. https://doi.org/10.1104/pp.17.00426

  • Branham SE, Farnham MW (2019) Identification of heat tolerance loci in broccoli through bulked segregant analysis using whole genome resequencing. Euphytica 215:34. https://doi.org/10.1007/s10681-018-2334-9

  • Branham SE, Stansell ZJ, Couillard DM, Farnham MW (2017) Quantitative trait loci mapping heat of tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theor Appl Genet 130(3): 529–538. https://doi.org/10.1007/s00122-016-2832-x

  • Brown AF, Yousef GG, Reid RW, Chebrolu KK, Thomas A, Krueger C, Jeffery E, Jackson E, Juvik JA (2015) Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms. Theor Appl Genet 128(7):1431–1447. https://doi.org/10.1007/s00122-015-2517-x

  • Bunnik EM, Le Roch KG (2013) An introduction to functional genomics and systems biology. Advwound Care 2(9):490–498

    Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236(4803):806–812

    Google Scholar 

  • Bus A, Hecht J, Huettel B, Reinhardt R, Stich B (2012) High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genomics 13:281. https://doi.org/10.1186/1471-2164-13-281

  • Carmen IU, Chithra P, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29

    Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953. https://doi.org/10.1126/science.1253435

  • Chandonia JM, Earnest TN, Brenner SE (2004) Structural genomics and structural biology: compare and contrast. Genome Biol 5:343

    Google Scholar 

  • Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, Nguyen HT (2015) Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci 6:504

    Google Scholar 

  • Chen, PH, Hsieh, MH, and Lo, HF (2014) Physiological response of cabbage (Brassica oleracea L. var capitata) to high temperature and waterlogging. J Taiwan Soc Hort Sci 60(4): 265–286

    Google Scholar 

  • Cheung W, Champagne G, Hubert N, Landry B (1997) Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet 94:569–582

    Google Scholar 

  • Chilcoat D, Liu ZB, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. In: Progress in molecular biology and translational science, vol 149. 1st edn. Elsevier Inc, pp 27–46. https://doi.org/10.1016/bs.pmbts.2017.04.005

  • Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapagenome sequencing project. Theor Appl Genet 115(6):777–792. https://doi.org/10.1007/s00122-007-0608-z

  • Chopperla R, Singh S, Tomar R, Mohanty S, Khan S, Reddy N, Padaria JC, Solanke AU (2018) Isolation and allelic characterization of finger millet (Eleusine coracana L.) small heat shock protein echsp17. 8 for stress tolerance. Indian J Genet 78:95–103

    Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196

    Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147(2):469–486. https://doi.org/10.1104/pp.108.118117

  • Darracq A, Adams KL (2013) Features of evolutionarily conserved alternative splicing events between Brassica and Arabidopsis. New Phytol 199:252–263

    Google Scholar 

  • Das A, Das B (2019) Nanotechnology a potential tool to mitigate abiotic stress in crop plants, abiotic and biotic stress in plants, Alexandre Bosco de Oliveira, IntechOpen, https://doi.org/10.5772/intechopen.83562. Available from: https://www.intechopen.com/books/abiotic-and-biotic-stress-in-plants/nanotechnology-apotential-tool-to-mitigate-abiotic-stress-in-crop-plants

  • de Jonge J, Kodde J, Severing EI, Bonnema G, Angenent GC, Immink RGH and Groot SPC (2016) Low temperature affects stem cell maintenance in brassica oleracea seedlings. Front Plant Sci 7:800. https://doi.org/10.3389/fpls.2016.00800

  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 2005(18):923–937

    Google Scholar 

  • DekkersJC HF (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3(1):22–32

    Google Scholar 

  • Dolatabadian A, Bayer PE, Tirnaz S, Hurgobin B, Edwards D, Batley J (2020) Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotech J 18(4):969–982

    Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Google Scholar 

  • El-Esawi MA, Germaine K, Bourke P, Malone R (2016) Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers. Crit Rev Biol 339:133–140

    Google Scholar 

  • Farnham M, Björkman T (2011) Evaluation of experimental broccoli hybrids developed for summer production in the Eastern United States. HortScience 46:858–863

    Google Scholar 

  • Farnham MW, Bjorkman T (2011) Breeding vegetables adapted to high temperatures: a case study with broccoli. HortScience 46:1093–1097

    Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232. https://doi.org/10.1038/cr.2013.114

  • Fuller MP, Metwali EMR, Eed MH, Jellings AJ (2006) Evaluation of abiotic stress resistance in mutated populations of cauliflower (Brassica oleracea var. botrytis). Plant Cell Tiss OrgCult 86:239. https://doi.org/10.1007/s11240-006-9112-4

  • Funk C, Lee R (2015) Public and scientists’ views on science and society. Pew Research Center [Internet]. 2015. Available from: http://www.pewinternet.org/2015/01/29/public-and-scientists-views-on-science-and-society/ [Accessed: 2017–12–17]

  • Gao Z, Luo W, Liu H, Zeng C, Liu X, Yi S, Wang W (2012) Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala). PLoSOne 7(8):e42637. https://doi.org/10.1371/journal.pone.0042637

  • Gill SS, Gill R, Anjum NA, Tuteja N (2013) Transgenic approaches for abiotic stress tolerance in crop plants. Plant Stress 7(SplIss 1):73–83

    Google Scholar 

  • Giuffrida F, Scuderi D, Giurato R, Leonardi C (2013) Physiological response of broccoliand cauliflower as affected by NaCl salinity. Acta Hort 1005:435–441

    Google Scholar 

  • Grevsen K, Olesen JE, Veierskov B (2003) The effects of temperature and plant developmental stage on the occurrence of the curd quality defects ‘bracting’ and ‘riciness’ in cauliflower. J Hort Sci Biotechnol 78:638–646

    Google Scholar 

  • Grover A, Aggarwal PK, Kapoor A, Katiyar-Agarwal S, Agarwal M, Chandramouli A (2003) Addressing abiotic stresses in agriculture through transgenic technology. CurrSci 84:355–367

    Google Scholar 

  • Hadi F, Ayaz M, Ali S, Shafiq M, Ullah, R, Jan AU (2014) Comparative effect of polyethylene glycol and mannitol induced drought on growth (in vitro) of canola (Brassica napus), cauliflower (Brassica oleracea) and tomato (Lycopersicum esculentum) seedlings. Intl J Biol Sci 4:34–41

    Google Scholar 

  • Hadi F, Gilpin M, Fuller MP (2011) Identification and expression analysis of CBF/DREB1 and COR15 genes in mutants of Brassica oleracea var. botrytis with enhanced proline production and frost resistance. Plant Physiol Biochem 49:1323–1332

    Google Scholar 

  • Hall AE (1992) Breeding for heat tolerance. Plant Breed Rev 10:129–168

    Google Scholar 

  • Harberd DH (1972) A contribution to the cyto-taxonomy of Brassica (Cruciferae) and its allies. Bot J 65(1):1–23. https://doi.org/10.1111/j.1095-8339.1972.tb00920.x

  • Haynes C, Everhart E, Jauron R, Nelson D, Lenahan J (2009) Cole Crops. Iowa State University, University Extension. http://www.extension.iastate.edu/Publications/PM1896.pdf

  • Heigwer F, Kerr G, Boutros ME (2014) CRISP: Fast CRISPR target site identification. Nat Methods 11:122

    Google Scholar 

  • Helm J (1963) Morphologisch-taxonomischeGliederung der Kultursippen von Brassica oleracea L. Kulturpflanze 11:92–210

    Google Scholar 

  • Higashio H, Aizawa S, Kunihisa M, Murakami, K, Tokuda, S, Uragami A (2012) Evaluation for comparison of waterlogging tolerance based on anaerobic respiration reaction of root in lettuce and broccoli. Hort Res (Japan) 11(4):477–483

    Google Scholar 

  • Hnilickova H, Duffek J (2004) Water deficit and its effect on physiological manifestations in selected varieties of cauliflower (Brassica oleracea var. botrytis L.). Sci Agric Bohem 35:57–63

    Google Scholar 

  • Hsu FC, Wu YL (2019) Performance of three cabbage (Brassica oleracea var. capitate) genotypes in flooding tolerance. Acta Hort 1257:139–142

    Google Scholar 

  • Hu J, Sadowski J, Osborn T, Landry B, Quirós C (1998) Linkage group alignment from four independent Brassica oleracea RFLP maps. Genome 41:226–235

    Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA et al (2003) Genetic engineering of glycine betaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Google Scholar 

  • Huang L, Yang Y, Zhang F, Cao J (2017) A genome-wide SNP-based genetic map and QTL mapping for agronomic traits in Chinese cabbage. Sci Rep 7:46305. https://doi.org/10.1038/srep46305

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967. https://doi.org/10.1038/ng.695

  • Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 120(1): 31–43. https://doi.org/10.1007/s00122-009-1157-4

  • Issarakraisila, M, Qifu, M and Turner, RW (2007). Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapasubsp. parachinensis) to waterlogging and water deficit. SciHort 111: 107–113

    Google Scholar 

  • Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129(2):440–450

    Google Scholar 

  • Jung HJ, Kayum MA, Thamilarasan SK, Nath UK, Park JI, Chung MY, Hur Y, Nou IS (2017) Molecular characterisation and expression profiling of calcineurin B-like (CBL) genes in Chinese cabbage under abiotic stresses. Funct Plant Biol 44(7):739–750

    Google Scholar 

  • Kage H, Kochler M, Stutze H (2004a) Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron 20(4):379–394

    Google Scholar 

  • Kage H, Kochler M, Stützel H (2004b) Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron 20(4):379–394. https://doi.org/10.1016/S1161-0301(03)00061-3

  • Kawakubo S, Gao F, Li S, Tan Z, Huang YK, Adkar-Purushothama CR, Ohshima K (2021) Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. ProcNatl AcadSci 118(12)

    Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2008) Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct Integr Genom 8:277–286

    Google Scholar 

  • Kayum MA, Park JI, Nath UK, Saha G, Biswas MK, Kim HT, Nou IS (2017) Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 18(1):1–20

    Google Scholar 

  • Kim JA (2016) Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance. Plant Cell Rep 35(9):1943–1954

    Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yan TJ, Jin YM, Kim HI, Par BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174(1):29–39

    Google Scholar 

  • Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed 9:201–210

    Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Google Scholar 

  • Landry BS, Hubert N, Etoh T, Harada JJ, Lincoln SE (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34:543–552

    Google Scholar 

  • Lang L, Xu A, Ding J, Zhang Y, Zhao N, Tian Z, Liu Y, Wang Y, Liu X, Liang F, Zhang B, Qin M, DalelhanJ HZ (2017) Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Front Plant Sci 8:1000. https://doi.org/10.3389/fpls.2017.01000

  • Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Intl J Curr Microbiol Appl Sci 3(7):749–760

    Google Scholar 

  • Lawrenson T, Hundleby P, Harwood W (2019) Creating targeted gene knockouts in Brassica oleracea using CRISPR/Cas9. Methods Mol Biol 1917:155–170

    Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. https://doi.org/10.1186/s13059-015-0826-7

  • Li Z, Liu Y, Yuan S, Han F, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Wang Y, Ji J (2021) Fine mapping of the major QTLs for biochemical variation of sulforaphane in broccoli florets using a DH population. Sci Rep 11(1):9004. https://doi.org/10.1038/s41598-021-88652-3

  • Lin C, Chen K, Chen H, Lee H, Hsieh C (2019a) Curd initiation and transformation in tropical Cauliflower cultivars under different temperature treatments. HortScience 54:1351–1356

    Google Scholar 

  • Lin CW, Fu SF, Liu YJ et al (2019b) Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation. BMC Plant Biol 19:3. https://doi.org/10.1186/s12870-018-1613-x

  • Lin YR, Lee JY, Tseng MC, Lee CY, Shen CH, Wang CS, Liou CC, Shuang LS, Paterson AH, Hwu KK (2018) Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Sci Rep 8(1):13609. https://doi.org/10.1038/s41598-018-31987-1

  • Lin HH, Linm KH, Chen SC (2015a) Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. Bot Stud 56:18. https://doi.org/10.1186/s40529-015-0098-2

  • Lin KH, Chen LFO, Li SD, Lo HF (2015b) Comparative proteomic analysis of cauliflower under high temperature and flooding stresses. SciHort 183:118–129

    Google Scholar 

  • Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    Google Scholar 

  • Liu S, Wang R, Zhang Z, Li Q, Wang L, Wang Y, Zhao Z (2019) High-resolution mapping of quantitative trait loci controlling main floral stalk length in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 20:437. https://doi.org/10.1186/s12864-019-5810-2

  • Liu T, Song X, Duan W et al (2014) Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Mol Biol Rep 32:1041–1056. https://doi.org/10.1007/s11105-014-0712-6

  • Lv H, Fang Z, Yang L, Zhang Y, Wang Y (2020) An update on the arsenal: Mining resistance genes for disease management of Brassica crops in the genomic era. HorticRes 7(1):1–18

    Google Scholar 

  • Ma C, Zhu C, Zheng M (2019) CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res 6:20. https://doi.org/10.1038/s41438-018-0107-1

  • Mageney V, Baldermann S, Albach DC (2016) Intraspecific Variation in carotenoids of Brassica oleracea var. sabellica. J Agric Food Chem 64:3251–3257

    Google Scholar 

  • Maggioni L, von Bothmer R, Poulsen G, Lipman E (2018) Domestication, diversity and use of Brassica oleracea L., based on ancient Greek and Latin texts. Genet Resour Crop Evol 65:137–159

    Google Scholar 

  • Martínez-Ballesta MC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Intl J Mol Sci 14:11607–11625

    Google Scholar 

  • Matschegewski C, Zetzsche H, Hasan Y, Leibeguth L, Briggs W, Ordon F, Uptmoor R (2015) Genetic variation of temperature regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis. Front Plant Sci 6:720. https://doi.org/10.3389/fpls.2015.00720

  • Mehraj H, Akter A, Miyaji N, Miyazaki J, Shea DJ, Fujimoto R, Doullah M (2020) Genetics of clubroot and fusarium wilt disease resistance in Brassica vegetables: the application of marker assisted breeding for disease resistance. Plants 9(6):726

    Google Scholar 

  • Metwali EMR, Fuller MP, Jellings AJ (2012) Agrobacterium mediated transformation of anti-stress genes into cauliflower (Brassica oleracea var. botrytis L.). Transformation and confirmation of stress tolerance. Aust J Basic Appl Sci 6(5):31–39

    Google Scholar 

  • Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102(6):892–899

    Google Scholar 

  • Murovec J, Guček K, Bohanec B, Avbelj M and Jerala R (2018) DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594. https://doi.org/10.3389/fpls.2018.01594

  • Muthusamy M, Yoon EK, Kim JA, Jeong M-J, Lee SI (2020) Brassica rapaSR45a regulates drought tolerance via the alternative splicing of target genes. Genes 11:182. https://doi.org/10.3390/genes11020182

  • Neugart S, Krumbein A, Zrenner R (2016) Influence of Light and temperature on gene expression leading to accumulation of specific flavonol glycosides and hydroxycinnamic acid derivatives in Kale (Brassica oleracea var. sabellica). Front Plant Sci 7:326

    Google Scholar 

  • Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought Tolerance in Wheat. Sci World J 2013:12. https://doi.org/10.1155/2013/610721

  • Nozawa K, Kawagishi Y, Kawabe A, Sato M, Masuta Y, Kato A, Ito H (2017) Epigenetic regulation of a heat-activated retrotransposon in cruciferous vegetables. Epigenomes 1(1):7

    Google Scholar 

  • Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, Kuginuki Y, Matsumoto S, Hirai M (2007) Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor Appl Genet 114(4):595–608. https://doi.org/10.1007/s00122-006-0460-6

  • Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685

    Google Scholar 

  • Park HJ, Jung WY, Lee SS, Song JH, Kwon S-Y, Kim H, Kim C, Ahn JC, Cho HS (2013) Use of heat stress responsive gene expression levels for early selection of heat tolerant Cabbage (Brassica oleracea L.). Intl J Mol Sci 14:11871–11894

    Google Scholar 

  • Park BJ, Liu Z, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169(3):553–558

    Google Scholar 

  • Parkin IA, Koh C, Tang H (2014) Transcriptome and methylome profiling reveal relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77. https://doi.org/10.1186/gb-2014-15-6-r77

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12(9):1523–1540. https://doi.org/10.1105/tpc.12.9.1523

  • Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:19199

    Google Scholar 

  • Pavlović I, Mlinarić S, Tarkowská D, Oklestkova J, Novák O, Lepeduš H, Bok VV, Brkanac SR, Strnad M, Salopek-Sondi B (2019) Early brassica crops responses to salinity stress: a comparative analysis between Chinese cabbage, white cabbage, and kale. Front Plant Sci 10:450

    Google Scholar 

  • Pink D, Bailey L, McClement S, Hand P, Mathas E, Buchanan-Wollaston V (2008) Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica 164:509–514. https://doi.org/10.1007/s10681-008-9742-1

  • Poveda J, Francisco M, Cartea ME, Velasco P (2020) Development of transgenic brassica crops against biotic stresses caused by pathogens and arthropod pests. Plants 9(12):1664

    Google Scholar 

  • Quezada-Martinez D, Addo Nyarko CP, Schiessl SV et al (2021) Using wild relatives and related species to build climate resilience in Brassica crops. Theor Appl Genet 134:1711–1728. https://doi.org/10.1007/s00122-021-03793-3

  • Raza A, Razzaq A, Mehmood SS, Hussain MA, Wei S, He H et al (2021) Omics: the way forward to enhance abiotic stress tolerance in Brassica napus L. GM Crops Food 12:251–281

    Google Scholar 

  • Redden R (2013) New approaches for crop genetic adaptation to the abiotic stresses predicted with climate change. Agronomy 3:419–432

    Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1:169–182. https://doi.org/10.1042/etls2017008

  • Ridge S, Brown PH, Hecht V, Driessen R, Weller J (2015) The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development. J Exp Bot 66:125–135

    Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defence pathways collide. The response of arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Google Scholar 

  • Rodriguez VM, Soengas P, Alonso-Villaverde V, Sotelo T, Cartea ME, Velasco P (2015) Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC Plant Biol 15:145

    Google Scholar 

  • Saad NSM, Severn-Ellis AA, Pradhan A, Edwards D, Batley J (2021) Genomics armed with diversity leads the way in Brassica improvement in a changing global environment. FrontGenet 12

    Google Scholar 

  • Santhiya S, Saha P, Tomar BS, Saha ND, Ghoshal C, Lata S (2020) Molecular characterization of heat tolerance in eggplant (Solanum melongena) lines using SSR markers. Indian J Agric Sci 90(10):1931–6olV

    Google Scholar 

  • Saulter KJ, Davis DW, Li PH, Wallerstein IS (1990) Leaf ethylene evaluation level following high temperature stress in common bean. HortScience 25:1282–1284

    Google Scholar 

  • Schaeffer SM, Nakata PA (2016) The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Rep 35:1451–1468

    Google Scholar 

  • Sebastian R, Howell E, King G, Marshall D, Keirsey M (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81

    Google Scholar 

  • Sebastian R, Kearsey M, King G (2002) Identification of quantitative trait loci controlling developmental characteristics of Brassica oleracea L. Theor Appl Genet 104:601–609. https://doi.org/10.1007/s001220100743

  • Shahzad A, Qian M, Sun B, Mahmood U, Li S, Fan Y et al (2021) Genome-wide association study identifies novel loci and candidate genes for drought stress tolerance in rapeseed. Oil Crop Sci 6:12–22

    Google Scholar 

  • Shan X, Zhang W, Yu F, Wang S, Li J, Tang J, Dai Z (2019) Genome-wide analysis of basic helix–loop–helix superfamily members reveal organization and chilling-responsive patterns in cabbage (Brassica oleracea var. capitata L.). Genes 10(11):914

    Google Scholar 

  • Shannon MC, Grieve CM, Lesch SM, Draper JH (2000) Analysis of salt tolerance in nine leafy vegetables irrigated with saline drainage water. J Amer Soc Hort Sci 125:658–664

    Google Scholar 

  • Sharma A, Kailasrao Deshmukh R, Jain N, Kumar Singh N (2011) Combining QTL mapping and transcriptome profiling for an insight into genes for grain number in rice (Oryza sativa L.). Indian J Genet 71:115

    Google Scholar 

  • Shih PY, Shih JC, Chang LC, Lo HF (2013) Physiological Index for tolerance tohigh temperature and waterlogging in cauliflower. J Taiwan Soc Hortic Sci 59:191–204 (in Chinese with English abstract)

    Google Scholar 

  • Shimizu M, Pu ZJ, Kawanabe T, Kitashiba H, Matsumoto S, Ebe Y, Sano M, Funaki T, Fukai E, Fujimoto RK, Okazaki (2015) Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor Appl Genet 128(1):119–130

    Google Scholar 

  • Singh BD (2003) Breeding for resistance to abiotic stresses. Drought resistance. In: Plant Breeding. Kalyani Publishers, New Delhi, pp 381–409

    Google Scholar 

  • Singh S, Bhatia R, Kumar R, Behera TK, Kumari K, Pramanik A, Ghemeray H, Sharma K, Bhattacharya RC, Dey SS (2021b) Elucidating mitochondrial DNA markers of Ogura-based CMS lines in Indian cauliflowers (Brassica oleracea var. botrytis L.) and their floral abnormalities due to diversity in cytonuclear interactions. Front Plant Sci 12:631489. https://doi.org/10.3389/fpls.2021a.631489

  • Singh S, Bhatia R, Kumar R, Das A, Ghemeray H, Behera TK, Dey SS (2021b) Characterization and genetic analysis of OguCMS and doubled haploid based large genetic arsenal of Indian cauliflowers (Brassica oleracea var. botrytis L.) for morphological, reproductive and seed yield traits revealed their breeding potential. Genet Resour Crop Evol 68:1603–1623. https://doi.org/10.1007/s10722-020-01090-4

  • Singh S, Dey SS, Bhatia R, Kumar R, Sharma K, Behera TK (2019b) Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. PLoSOne 14:e0210772. https://doi.org/10.1371/journal.pone.0210772

  • Slocum MK, Figdore SS, Kennard WC, Suzuki JY, Osborn TC (1990) Linkage arrangement of restriction fragment length polymorphisms in Brassica oleracea. Theor Appl Genet 80:57–64. https://doi.org/10.1007/BF00224016

  • Soengas P, Hand P, Vicente JG, Pole JM, Pink DA (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestrispv. campestris in Brassica rapa. Theor Appl Genet 114(4): 637–645. https://doi.org/10.1007/s00122-006-0464-2

  • Song H, Kim H, Hwang BH, Yi H, Hur Y (2020) Natural variation in glycine-rich region of Brassica oleracea cold shock domain protein 5 (BoCSDP5) is associated with low temperature tolerance. Gene Genom 42(12):1407–1417. https://doi.org/10.1007/s13258-020-01010-x

  • Song KM, Suzuki JY, Slocum MK, Williams PM, Osborn TC (1991) A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet 82(3):296–304. https://doi.org/10.1007/BF02190615

  • Song X, Ge T, Li Y, Hou X (2015) Genome-wide identification of SSR and SNP markers from the non-heading Chinese cabbage for comparative genomic analyses. BMC Genomics 16(1):328. https://doi.org/10.1186/s12864-015-1534-0

  • Sprague GF, Brimhall B, Hixon RM (1943) Some effects of the waxy gene in corn on properties of the endosperm Starch1. Agron J 35(9):817

    Google Scholar 

  • Sprink T, Eriksson D, Schiemann J, Hartung F. (2016). Regulatory hurdles for genome editing: Process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35(7):1493–1506. https://doi.org/10.1007/s00299-016-1990-2

  • Stansell Z, Farnham M, Björkman T (2019) Complex horticultural quality traits in broccoli are illuminated by evaluation of the immortal BolTBDH mapping population. Front Plant Sci 10:1104. https://doi.org/10.3389/fpls.2019.01104

  • Su Y, Liu Y, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y (2015) QTL analysis of head splitting resistance in Cabbage (Brassica oleracea L. var. capitata) using SSR and InDelmakers based on whole-g Re-Sequencing. PLoSOne 10(9):e0138073. https://doi.org/10.1371/journal.pone.0138073

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W et al (2013) SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoSOne 8(3):e58700. https://doi.org/10.1371/journal.pone.0058700.

  • Sun QF, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y (2018) CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L. Intl J Mol Sci 19:271

    Google Scholar 

  • Sun D, Wang C, Zhang X, Zhang W, Jiang H, Yao X, Liu L, Wen Z, Niu Z, Shan X (2019) Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticulture Research 6:82. https://doi.org/10.1038/s41438-019-0164-0

  • Takeshi F, Julia BS (2004) Plant responses to hypoxia – is survival a balancing act? Trend Plant Sci 9:449–456

    Google Scholar 

  • Tan DKY, Birch CJ, Wearing AH, Rickertmm KG (2000) Predicting broccoli development I. Development is predominantly determined by temperature rather than photoperiod. Sci Hort (amsterdam) 84:227–243. https://doi.org/10.1016/S0304-4238(99)00139-9

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11(2):63–68

    Google Scholar 

  • Thorwarth P, Yousef EAA, Schmid KJ (2018) Genomic prediction and association mapping of curd-related traits in gene bank accessions of cauliflower. G3 Genes|Genomes|Genetics 8(2):707–718. https://doi.org/10.1534/g3.117.300199

  • Tuberosa (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physio 3:347. https://doi.org/10.3389/fphys.2012.00347

  • Verma D, Lakhanpal N, Singh K (2019) Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC Genomics 20:227. https://doi.org/10.1186/s12864-019-5593-5

  • Voorrips RE, JongeriuMC KHJ (1997) Mapping of two genes for resistance to clubroot (Plasmodiophorabrassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94(1):75–82. https://doi.org/10.1007/s001220050384

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M, Friters A, Pot J, Paleman J, Kuiper K, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Google Scholar 

  • Wahid A, Fazal H, Jan AU (2014) In vitro assessment of tomato (Lycopersicum esculentum) and cauliflower (Brassica oleracea) seedlings growth and proline production under salt stress. Intl J Biosci 4:109–115

    Google Scholar 

  • Wang W, Huang S, Liu Y, Fang Z, Yang L, Hua W, Yuan S, Liu S, Sun, J, Zhuang M, Zhang Y, Zeng A (2012) Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC Genomics 13:523. https://doi.org/10.1186/1471-2164-13-523

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Google Scholar 

  • Wang Q-B, Xu W, Xue Q-Z, Su W-A (2010) Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ Sci B11:851–861

    Google Scholar 

  • Wang X, Li N, Li W, Gao X, Cha M, Qin L, Liu L (2020a) Advances in transcriptomics in the response to stress in plants. Glob Med Genet 7:30–34

    Google Scholar 

  • Wang J, Zhang Q, You X, Hou X (2020b) Transcriptome and small RNA combined sequencing analysis of cold tolerance response in non-heading Chinese cabbage. Front Genet https://doi.org/10.21203/rs.2.24735/v1

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Google Scholar 

  • Wolt JD, Wang K, Yang B (2016) The regulatory status of genome-edited crops. Plant Biotechnol J 4:510–518. https://doi.org/10.1111/pbi.12444

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Google Scholar 

  • Xiong JS, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019

    Google Scholar 

  • Xu P, Wu X, Wang B, Liu Y, Ehlers JD, Close TJ, Robert PA, Diop NN, Qin D, Hu T, Lu Z, Li G (2011) A SNP and SSR based genetic map of asparagus bean (Vigna unguiculata ssp. sesquipedialis) and comparison with the broader species. PLoSOne 6(1):e15952. https://doi.org/10.1371/journal.pone.0015952

  • Xu Y, Zeng A, Song L, Li, Yan (2019) Comparative transcriptomics analysis uncovers alternative splicing events and molecular markers in cabbage (Brassica oleracea L.). Planta 249(5):1599–1615. https://doi.org/10.1007/s00425-019-03108-3

  • Xue DW, Zhou MX, Zhang XQ, Chen S, Wei K, Zeng FR (2010) Identification of QTLs for yield and yield components of barley under different growth conditions. J Zhejiang Univ Sci B 11:169–176. https://doi.org/10.1631/jzus.B0900332

  • Yang L, Watts DJ (2005) Particles surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Google Scholar 

  • Yang S, Yu W, Wei X, Wang Z, Zhao Y, Zhao X, Tian B, Yuan Y, Zhang X (2020) An extended KASP-SNP resource for molecular breeding in Chinese cabbage (Brassica rapa L. ssp. pekinensis). PLoSOne 15(10):e0240042. https://doi.org/10.1371/journal.pone.0240042

  • Yang H, Wu JJ, Tang T, Liu KD, Dai C (2017a) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7:7489

    Google Scholar 

  • Yarnell SH (1956) Cytogenetics of the vegetable crops. II Crucifers Bot Rev 22:81–166

    Google Scholar 

  • Yin X, Stam P, Kropff M, Schapendonk A (2003) Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron J 95:90–98

    Google Scholar 

  • Yu H, Wang J, Sheng X, Zhao Z, Shen Y, Branca F, Gu H (2019a) Construction of a high-density genetic map and identification of loci controlling purple sepal trait of flower head in Brassica oleracea L. italica. BMC Plant Biol 19:228. https://doi.org/10.1186/s12870-019-1831-x

  • Yu H, Wang J, Zhao Z, Sheng X, Shen Y, Branca F, Gu H (2019b) Construction of a high-density genetic map and identification of loci related to hollow stem trait in broccoli (Brassica oleracea var. italica). Front Plant Sci 10. https://doi.org/10.3389/fpls.2019b.00045

  • Zafar SA, Zaidi SSEA, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A, Foyer C (2020) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot 71:470–479. https://doi.org/10.1093/jxb/erz476

  • Zhang X, Su Y, Liu Y, Fang Z, Yang L, Zhuang M, Zhanga Y, Lia Z, Lv H (2016) Genetic analysis and QTL mapping of traits related to head shape in cabbage (Brassica oleracea var. capitata L.). Sci Hort 207:82–88. https://doi.org/10.1016/j.scienta.2016.05.015

  • Zhang Y, Xu A, Lang L, Wang Y, Liu X, Liang F, Zhang B, Qin M, Dalelhan J, Huang Z (2018) Genetic mapping of a lobed-leaf gene associated with salt tolerance in Brassica napus L. Plant Sci 269:75–84. https://doi.org/10.1016/j.plantsci.2018.01.005

  • Zhang Y, Xu P, Lu C, Kuang Y, Zhang X, Cao D, Li C, Chang Y, Hou N, Li H, Wang S, Sun X (2011) Genetic linkage mapping and analysis of muscle fiber-related QTLs in common carp (Cyprinus carpio L.). Mar Biotechnol 13(3):376–392. https://doi.org/10.1007/s10126-010-9307-x

  • Zhao Y, Prakash CS, He G (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5:362. https://doi.org/10.1186/1756-0500-5-362

  • Zhao Z, Sheng X, Yu H, Wang J, Shen Y, Gu H (2020) Identification of candidate genes involved in curd riceyness in cauliflower. Intl J Mol Sci 21:1999. https://doi.org/10.3390/ijms21061999

  • Zheng XY, Wang YJ, Song SH, Li L, Klocke E (2004) Detecting molecular markers associated with heat tolerance of Chinese cabbage. Acta Hort 2004(637):317–323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, P. et al. (2022). Genomic Designing for Abiotic Stress Resistant Brassica Vegetable Crops. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-03964-5_5

Download citation

Publish with us

Policies and ethics