Skip to main content

Neuroevolution Trajectory Networks of the Behaviour Space

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

A network-based modelling technique, search trajectory networks (STNs), has recently helped to understand the dynamics of neuroevolution algorithms such as NEAT. Modelling and visualising variants of NEAT made it possible to analyse the dynamics of search operators. Thus far, this analysis was applied directly to the NEAT genotype space composed of neural network topologies and weights. Here, we extend this work, by illuminating instead the behavioural space, which is available when the evolved neural networks control the behaviour of agents. Recent interest in behaviour characterisation highlights the need for divergent search strategies. Quality-diversity and Novelty search are examples of divergent search, but their dynamics are not yet well understood. In this article, we examine the idiosyncrasies of three neuroevolution variants: novelty, random and objective search operating as usual on the genotypic search space, but analysed in the behavioural space. Results show that novelty is a successful divergent search strategy. However, its abilities to produce diverse solutions are not always consistent. Our visual analysis highlights interesting relationships between topological complexity and behavioural diversity which may pave the way for new characterisations and search strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatzilygeroudis, K., Cully, A., Vassiliades, V., Mouret, J.-B.: Quality-diversity optimization: a novel branch of stochastic optimization. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds.) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. SOIA, vol. 170, pp. 109–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66515-9_4

    Chapter  MATH  Google Scholar 

  2. Costa, V., Lourenço, N., Machado, P.: Coevolution of generative adversarial networks. In: International Conference on the Applications of Evolutionary Computation (Part of EvoStar). pp. 473–487. Springer (2019)

    Google Scholar 

  3. Csardi, G., Nepusz, T.: The iGraph software package for complex network research. Int. J. Complex Syst. 1695 (2006)

    Google Scholar 

  4. Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular framework. IEEE Trans. Evol. Comput. 22(2), 245–259 (2018)

    Article  Google Scholar 

  5. Doncieux, S., Laflaquière, A., Coninx, A.: Novelty search: a theoretical perspective. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 99–106 (2019)

    Google Scholar 

  6. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31, 7–15 (1989)

    Article  MathSciNet  Google Scholar 

  7. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIFE Xi, pp. 329–336 (2008)

    Google Scholar 

  8. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–222 (2011). https://doi.org/10.1162/EVCO_a_00025

    Article  Google Scholar 

  9. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local comp. In: GECCO, pp. 211–218 (2011)

    Google Scholar 

  10. Lehman, J., Stanley, K.O., et al.: Exploiting open-endedness to solve problems through the search for novelty (2008)

    Google Scholar 

  11. McIntyre, A., Kallada, M., Miguel, C.G., da Silva, C.F.: NEAT-Python. https://github.com/CodeReclaimers/neat-python

  12. Meyerson, E., Lehman, J., Miikkulainen, R.: Learning behavior characterizations for novelty search, pp. 149–156 (2016). https://doi.org/10.1145/2908812.2908929

  13. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

    Article  Google Scholar 

  14. Narvaez-Teran, V., Ochoa, G., Rodriguez-Tello, E.: Search trajectory networks applied to the cyclic bandwidth sum problem. IEEE Access 9, 1–1 (2021). https://doi.org/10.1109/access.2021.3126015

    Article  Google Scholar 

  15. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  16. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks: a tool for analysing and visualising the behaviour of metaheuristics. Appl. Soft Comput. 109, 107492 (2021). https://doi.org/10.1016/j.asoc.2021.107492

    Article  Google Scholar 

  17. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks of population-based algorithms in continuous spaces. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds.) EvoApplications 2020. LNCS, vol. 12104, pp. 70–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43722-0_5

    Chapter  Google Scholar 

  18. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transitions with local optima networks: number partitioning as a case study. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_16

    Chapter  Google Scholar 

  19. Omelianenko, I.: Hands-On Neuroevolution with Python. Packt Publishing Limited, Birmingham (2019)

    Google Scholar 

  20. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3(JUL), 1–17 (2016). https://doi.org/10.3389/frobt.2016.00040

  21. Real, E., et al.: Large-scale evolution of image classifiers. In: International Conference on Machine Learning, pp. 2902–2911. PMLR (2017)

    Google Scholar 

  22. Sarti, S., Ochoa, G.: A NEAT visualisation of neuroevolution trajectories. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplications 2021. LNCS, vol. 12694, pp. 714–728. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72699-7_45

    Chapter  Google Scholar 

  23. Siebel, N.T., Sommer, G.: Evolutionary reinforcement learning of artificial neural networks. Int. J. Hybrid Intell. Syst. 4(3), 171–183 (2007)

    MATH  Google Scholar 

  24. Silva, F., Correia, L., Christensen, A.L.: Evolutionary online behaviour learning and adaptation in real robots. Roy. Soc. Open Sci. 4(7) (2017). https://doi.org/10.1098/rsos.160938

  25. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks through neuroevolution. Nat. Mach. Intell. 2, 24–35 (2019)

    Article  Google Scholar 

  26. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. J. Artif. Intell. Res. 21, 63–100 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Sarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarti, S., Adair, J., Ochoa, G. (2022). Neuroevolution Trajectory Networks of the Behaviour Space. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics