Skip to main content

Improving the Convergence and Diversity in Differential Evolution Through a Stock Market Criterion

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2022)

Abstract

Most of the Evolutionary Algorithms (EA) use a population of candidate solutions to explore the search space following specific rules during an iterative process. These algorithms are designed expecting a good balance between exploration and exploitation during the search process. Besides, the diversity of the population is crucial to properly explore the search space. This article introduces an improved version of the Differential Evolution (DE) algorithm, which employs the moving average (MA) to determine when the population should diversify or intensify by using additional operators. The MA is one of the most used stock market indicators, providing recommendations for selling or buying stocks based on historical data. Here, the MA of the historical fitness and dimension-wise diversity is analyzed to determine if the DE continues operating normally or should diversify or intensify the search using additional operators. An exhaustive benchmark involving 37 optimization functions with different complexity levels confirmed the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some functions can also be found at https://www.sfu.ca/~ssurjano/optimization.html.

  2. 2.

    The convergence curves for the 50 dimensions also have advantages for MADE. However, they were not considered due to the space limitation.

References

  1. Aalto, J., Lampinen, J.: A mutation adaptation mechanism for differential evolution algorithm. In: 2013 IEEE Congress on Evolutionary Computation, pp. 55–62. IEEE (2013)

    Google Scholar 

  2. Aalto, J., Lampinen, J.: A mutation and crossover adaptation mechanism for differential evolution algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 451–458. IEEE (2014)

    Google Scholar 

  3. Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. J. Artif. Intell. Soft Comput. Res. 4(2), 83–97 (2014)

    Article  Google Scholar 

  4. Civicioglu, P., Besdok, E.: Bezier search differential evolution algorithm for numerical function optimization: a comparative study with crmlsp, mvo, wa, shade and lshade. Expert Syst. Appl. 165, 113875 (2021)

    Article  Google Scholar 

  5. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988). https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  6. Hussain, K., Salleh, M.N.M., Cheng, S., Naseem, R.: Common benchmark functions for metaheuristic evaluation: a review. JOIV: Int. J. Inf. Visualization 1(4–2), 218–223 (2017)

    Article  Google Scholar 

  7. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 31(11), 7665–7683 (2018). https://doi.org/10.1007/s00521-018-3592-0

    Article  Google Scholar 

  8. Hyndman, R.J.: Moving averages. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 866–869. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_380

  9. Indera, N., Yassin, I., Zabidi, A., Rizman, Z.: Non-linear autoregressive with exogeneous input (narx) bitcoin price prediction model using pso-optimized parameters and moving average technical indicators. J. Fund. Appl. Sci. 9(3S), 791–808 (2017)

    Article  Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  11. Kukkonen, S., Coello, C.A.C.: Applying exponential weighting moving average control parameter adaptation technique with generalized differential evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4755–4762. IEEE (2016)

    Google Scholar 

  12. Metghalchi, M., Marcucci, J., Chang, Y.H.: Are moving average trading rules profitable? Evidence from the European stock markets. Appl. Econ. 44(12), 1539–1559 (2012)

    Article  Google Scholar 

  13. Oliva, D., Martins, M.S.: A Bayesian based hyper-heuristic approach for global optimization. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1766–1773. IEEE (2019)

    Google Scholar 

  14. Oliva, D., et al.: Balancing the influence of evolutionary operators for global optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  15. Roy, P.K., Sur, A., Pradhan, D.K.: Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization. Eng. Appl. Artif. Intell. 26(10), 2516–2524 (2013)

    Article  Google Scholar 

  16. Scoczynski, M., et al.: A selection hyperheuristic guided by Thompson sampling for numerical optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1394–1402 (2021)

    Google Scholar 

  17. Shen, X., Zou, D., Duan, N., Zhang, Q.: An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch. Energy 186, 115801 (2019)

    Article  Google Scholar 

  18. Shi, Y., Eberhart, R.C.: Population diversity of particle swarms. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 1063–1067. IEEE (2008)

    Google Scholar 

  19. Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32(16), 12363–12379 (2020). https://doi.org/10.1007/s00521-020-04832-8

    Article  Google Scholar 

  20. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  21. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC), pp. 1658–1665. IEEE (2014)

    Google Scholar 

  22. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC 2006), vol. 1, pp. 695–701. IEEE (2005)

    Google Scholar 

  23. Wang, S., Li, Y., Yang, H.: Self-adaptive mutation differential evolution algorithm based on particle swarm optimization. Appl. Soft Comput. 81, 105496 (2019)

    Article  Google Scholar 

  24. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives in Statistics), pp. 196–202. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_16

  25. Zhang, J., Sanderson, A.C.: Jade: self-adaptive differential evolution with fast and reliable convergence performance. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2251–2258. IEEE (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navarro, M.A. et al. (2022). Improving the Convergence and Diversity in Differential Evolution Through a Stock Market Criterion. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics