Skip to main content

Electrospun Nanofibers

Principles, Technology and Novel Applications

  • Book
  • © 2022

Overview

  • Identifies new and innovative applications of nanofibers to move this field beyond its current state
  • Latest and emerging applications of nanofiber technology in various fields
  • Valuable resource for students and research professionals to broaden their knowledge in electrospun nanofibers

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (26 chapters)

  1. Fundamentals of Electrospinning

  2. Applications of Electrospun Nanofibers

Keywords

About this book

This book presents the development of electrospun materials, fundamental principles of electrospinning process, controlling parameters, electrospinning strategies, and electrospun nanofibrous structures with specific properties for applications in tissue engineering and regenerative medicine, textile, water treatment, sensor, and energy fields. This book can broadly be divided into three parts: the first comprises basic principles of electrospinning process, general requirements of electrospun materials and advancement in electrospinning technology, the second part describes the applications of electrospun materials in different fields and future prospects, while the third part describes applications that can be used in advanced manufacturing based on conjoining electrospinning and 3D printing. Electrospinning is the most successful process for producing functional nanofibers and nanofibrous membranes with superior chemical and physical properties. The unique properties of electrospun materials including high surface to volume ratio, flexibility, high mechanical strength, high porosity, and adjustable nanofiber and pore size distribution make them potential candidates in a wide range of applications in biomedical and engineering areas. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types with tunable diameter and morphology, tunable characteristics, having specific patterns and 3D structures.

With a strong focus on fundamental materials science and engineering, this book provides systematic and comprehensive coverage of the recent developments and novel perspectives of electrospun materials. This comprehensive book includes chapters that discuss the latest and emerging applications of nanofiber technology in various fields, specifically in areas such as wearable textile, biomedical applications, energy generation and storage, water treatment and environmental remediation, and sensors such as biomarkers in healthcare and biomedical engineering. Despite all these advancements, there are still challenges to be addressed and overcome for nanofiber technology to move towards maturation.

Editors and Affiliations

  • International Clean Water Institute, Manassas, USA

    Ashok Vaseashta

  • Department of Chemical Engineering, Mersin University, Mersin, Turkey

    Nimet Bölgen

About the editors

Ashok Vaseashta, Prof. Dr. is CEO/CTO and Executive Director for research with the International Clean Water Institute in Virginia, USA. He also serves as a Professor at Riga Technical University, Chaired Professor of Nanotechnology at the Academy of Sciences of Moldova, Academician at Euro-Mediterranean Academy of Arts and Sciences, and a Senior Strategic Research Advisor for several organizations. Inspired by nature and guided by societal necessities, he strives for technological innovations to address the global challenges of the 21st century. His research interests include CBRN defense, critical infrastructure safety and security, and environmental sustainability - all using nexus of advanced technological solution platforms. He is a scholar, visionary, strategist, and dedicated futurist providing strategic leadership to promote and advance research initiatives and priorities using data-driven decisions. He received Ph.D. from the Virginia Polytechnic Institute and State University, Blacksburg, VA in 1990 followed by Kobe post-doctoral fellowship. Following his Ph.D., he served as a professor and researcher at Virginia Tech and Marshall University. He also served as the Director of Research at the Institute for Advanced Sciences Convergence and International Clean Water Institute for Norwich University Applied Research Institutes, Vice-Provost (Rector) for Research in South Carolina, Visiting Professor at the 3 Nano-SAE Research Centre, University of Bucharest, Romania and Visiting Scientist at the Helen and Martin Kimmel Center of Nanoscale Science at the Weizmann Institute of Science, Israel. He served the U.S. Department of State in two rotations, as strategic S&T advisor in the Bureau of International Security and Nonproliferation, Office of Weapons of Mass Destruction and Terrorism, and U.S. diplomat.  His research interests span foresight, nanotechnology, environmental/ecological science, and critical infrastructure safety and security.He is the author/editor of 11 books and has published over 300 articles in scientific journals, book chapters, and conferences. He serves on editorial boards of several international journals and is an active member of various professional organizations.

 

Prof. Dr. Nimet Bolgen received B.S. degree in Chemical Engineering at Ankara University, Turkey in 2002, and M.S. degree in Chemical Engineering at Hacettepe University, Turkey in 2004. She received PhD degree in Bioengineering at Hacettepe University, Turkey in 2008. She was visiting scientist at Sabancı University, Turkey; Lund University, Sweden; Institute of Polymer Science and Technology, Spain; and Keele University, United Kingdom. She has been working at Chemical Engineering Department, Mersin University, Turkey since 2009. She is the author of 13 book chapters, 45 articles, and more than 100 proceedings. Prof. Bolgen’s research is focused on the development of biomaterials for tissue engineering and regenerative medicine, drug delivery systems from natural and synthetic polymers, cryogels, and electrospun nanofibers for biomedical applications.

Bibliographic Information

  • Book Title: Electrospun Nanofibers

  • Book Subtitle: Principles, Technology and Novel Applications

  • Editors: Ashok Vaseashta, Nimet Bölgen

  • DOI: https://doi.org/10.1007/978-3-030-99958-2

  • Publisher: Springer Cham

  • eBook Packages: Chemistry and Materials Science, Chemistry and Material Science (R0)

  • Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

  • Hardcover ISBN: 978-3-030-99957-5Published: 15 July 2022

  • Softcover ISBN: 978-3-030-99960-5Published: 16 July 2023

  • eBook ISBN: 978-3-030-99958-2Published: 14 July 2022

  • Edition Number: 1

  • Number of Pages: XIX, 766

  • Number of Illustrations: 155 b/w illustrations, 182 illustrations in colour

  • Topics: Structural Materials, Materials Science, general, Energy Materials, Nanotechnology

Publish with us