Skip to main content

Using Simplified EEG-Based Brain Computer Interface and Decision Tree Classifier for Emotions Detection

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 450))

Abstract

The aim of the paper was to analyze the possibility to recognize human emotions by using a commercially applicable EEG interface and to check how many distinct emotions it is possible to distinguish. The samples were processed to apply to the classifier training. The AutoML software was used to build the decision tree classifier to check the output accuracy and its reliability. Then, we build the classifier for every possible combination. Every EEG band, without distinguishing the high/low frequency, was included in the training or excluded from it. The output of this research was used to determine which EEG bands are the most important in human emotion recognition from EEG data. The AutoML resulted in an accuracy of recognizing four distinct emotions equal to 99.80%. Later, AutoML experiments on each EEG band have shown that the most important specters are respectively, beta, alpha, and gamma, while delta and theta are the less important ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, Z., et al.: Machine learning at microsoft with ml.net. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2448–2458. Association for Computing Machinery (2019)

    Google Scholar 

  2. Bialas, K., Kedziora, M.: Analiza mozliwosci sterowania aplikacja mobilna za pomoca interfejsu mozg-komputer. In: XII Ogolnokrajowa Konferencja Naukowa MLODZI NAUKOWCY W POLSCE\_BADANIA I ROZWOJ, Jesien 2020

    Google Scholar 

  3. Chalupnik, R., Bialas, K., Kedziora, M., Jozwiak, I.: Acquiring and processing data using simplified EEG-based brain-computer interface for the purpose of detecting emotions. In: ACHI 2021: The Fourteenth International Conference on Advances in Computer-Human Interactions, pp. 97–103 (2021)

    Google Scholar 

  4. Clapham, C., Nicholson, J., Nicholson, J.: The Concise Oxford Dictionary of Mathematics. Oxford Paperback Reference, OUP Oxford (2014). https://books.google.pl/books?id=c69GBAAAQBAJ

  5. Cohen, M.X.: Where does EEG come from and what does it mean? Trends Neurosci. 40(4), 208–218 (2017)

    Article  Google Scholar 

  6. Ekman, P., Cordaro, D.: What is meant by calling emotions basic. Emot. Rev. 3(4), 364–370 (2011)

    Article  Google Scholar 

  7. He, H., Tan, Y., Ying, J., Zhang, W.: Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm. Appl. Soft Comput. 94, 106426 (2020)

    Google Scholar 

  8. Herrmann, C.S., Strüber, D., Helfrich, R.F., Engel, A.K.: EEG oscillations: from correlation to causality. Int. J. Psychophysiol. 103, 12–21 (2016)

    Google Scholar 

  9. Kanayama, N., Sato, A., Ohira, H.: Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology 44(3), 392–402 (2007)

    Article  Google Scholar 

  10. Katona, J., Farkas, I., Ujbanyi, T., Dukan, P., Kovari, A.: Evaluation of the NeuroSky MindFlex EEG headset brain waves data. In: 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE (2014). https://doi.org/10.1109/sami.2014.6822382

  11. Kisley, M., Cornwell, Z.: Gamma and beta neural activity evoked during a sensory gating paradigm: effects of auditory, somatosensory and cross-modal stimulation. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 117, 2549–2563 (2006)

    Google Scholar 

  12. Lin, Y.P., Wang, C.H., Wu, T.L., Jeng, S.K., Chen, J.: EEG-based emotion recognition in music listening: a comparison of schemes for multiclass support vector machine, pp. 489–492 (2009)

    Google Scholar 

  13. NeuroSky: Mindwave mobile 2 available now improved comfort. http://neurosky.com/2018/06/mindwave-mobile-2-available-now-improved-comfort/. Accessed 14 Apr 2021

  14. Nie, D., Wang, X., Shi, L.C., Lu, B.L.: EEG-based emotion recognition during watching movies, pp. 667–670 (2011). https://doi.org/10.1109/NER.2011.5910636

  15. Niedermeyer, E.: Alpha rhythms as physiological and abnormal phenomena. Int. J. Psychophysiol. 26(1), 31–49 (1997)

    Article  Google Scholar 

  16. Niedermeyer, E.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  17. Osgood, C., Suci, G., Tenenbaum, P.: The Measurement of Meaning. University of Illinois Press, Champaign (1957)

    Google Scholar 

  18. Plass-Oude Bos, D.: EEG-based emotion recognition. The Influence of Visual and Auditory Stimuli, January 2006

    Google Scholar 

  19. Saganowski, S., et al.: Emotion recognition using wearables: a systematic literature review-work-in-progress. In: 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 1–6. IEEE (2020)

    Google Scholar 

  20. Shiota, M.N.: Ekman’s theory of basic emotions. In: The SAGE Encyclopedia of Theory in Psychology (2016)

    Google Scholar 

  21. Schachter, S.C., Schomer, D.L.: Atlas of Ambulatory EEG. Academic Press, Cambridge (2005)

    Google Scholar 

  22. Sullivan, W.: Machine Learning For Beginners: Algorithms, Decision Tree and Random Forest Introduction. CreateSpace Independent Publishing Platform, 20 August 2017

    Google Scholar 

  23. Budzynski, T.H., Evans, J.R., Abarbanel, A: Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications. Academic Press, Cambridge (2008)

    Google Scholar 

  24. Wei, C., Chen, L.l., Song, Z.Z., Lou, X.G., Li, D.D.: EEG-based emotion recognition using simple recurrent units network and ensemble learning. Biomed. Signal Process. Control 58, 101756 (2020)

    Google Scholar 

  25. Yin, Y., Zheng, X., Hu, B., Zhang, Y., Cui, X.: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM. Appl. Soft Comput. 100, 106954 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kedziora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chalupnik, R., Bialas, K., Majewska, Z., Kedziora, M. (2022). Using Simplified EEG-Based Brain Computer Interface and Decision Tree Classifier for Emotions Detection. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-030-99587-4_26

Download citation

Publish with us

Policies and ethics