Skip to main content

Parameter Tuning of PID Controller Based on Arithmetic Optimization Algorithm in IOT Systems

  • Chapter
  • First Online:
Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1038))

Abstract

Nowadays, the Internet of Things (IOT) is a modernistic growth in industrial applications. Proportional–Integral–Derivative (PID) controller is an essential device in most engineering applications. The vital abuse of PID is choosing the best parameters' values (Kp, Ki, and Kd) with the traditional methods which cannot achieve the optimum response. In this work, Arithmetic Optimization Algorithm (AOA) which is a meta-heuristic algorithm is used to select the optimum values of the parameters. AOA is chosen since it has efficient exploration and exploitation capabilities in the search space. The AOA algorithm is tested for choosing the optimum values of PID's parameters for controlling two engineering applications are three cascaded liquid level tanks systems and DC motor regulation. AOA has superiority over the comparative algorithms which is used in the test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Angurala et al., An internet of things assisted drone based approach to reduce rapid spread of COVID-19. J. Saf. Sci. Resil. 1(1), 31–35 (2020)

    Google Scholar 

  2. E. Priyanka, S. Thangavel, X.-Z. Gao, Review analysis on cloud computing based smart grid technology in the oil pipeline sensor network system. Pet. Res. 6(1), 77–90 (2021)

    Google Scholar 

  3. L. Jiang et al., An IoT-oriented data storage framework in cloud computing platform. IEEE Trans. Ind. Inform. 10(2), 1443–1451 (2014)

    Article  Google Scholar 

  4. C. Zhang, Y. Chen, A review of research relevant to the emerging industry trends: industry 4.0, IoT, blockchain, and business analytics. J. Ind. Integr. Manag. 5(01), 165–180 (2020)

    Google Scholar 

  5. E. Priyanka et al., Integrating IoT with LQR-PID controller for online surveillance and control of flow and pressure in fluid transportation system. J. Ind. Inf. Integr. 17, 100127 (2020)

    Google Scholar 

  6. K. Ogata, Y. Yang, Modern Control Engineering, vol. 4 (Prentice Hall, India, 2002)

    Google Scholar 

  7. T. Mansour, PID Control: Implementation and Tuning (BoD—Books on Demand, Norderstedt, 2011)

    Google Scholar 

  8. J.G. Ziegler, N.B. Nichols, Optimum settings for automatic controllers. trans. ASME 64(11), (1942)

    Google Scholar 

  9. E.G. Talbi, Metaheuristics: From Design to Implementation, vol. 74 (Wiley, New York, 2009)

    Google Scholar 

  10. Kennedy, Particle swarm optimization. Neural Networks (1995)

    Google Scholar 

  11. S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  12. A.F. Nematollahi, A. Rahiminejad, B. Vahidi, A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Appl. Soft Comput. 59, 596–621 (2017)

    Article  Google Scholar 

  13. B. Javidy, A. Hatamlou, S. Mirjalili, Ions motion algorithm for solving optimization problems. Appl. Soft Comput. 32, 72–79 (2015)

    Article  Google Scholar 

  14. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  15. S. Rahmanzadeh, M.S. Pishvaee, Electron radar search algorithm: a novel developed meta-heuristic algorithm. Soft Comput. 1–23 (2019)

    Google Scholar 

  16. Y. Zou, The whirlpool algorithm based on physical phenomenon for solving optimization problems. Eng. Comput. (2019)

    Google Scholar 

  17. M. Jain, V. Singh, A. Rani, A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019)

    Article  Google Scholar 

  18. D. Karaboga, B. Basturk, Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, in Foundations of Fuzzy Logic and Soft Computing (2007), pp. 789–798

    Google Scholar 

  19. S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  20. M. Yazdani, F. Jolai, Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3(1), 24–36 (2016)

    Google Scholar 

  21. S. Mirjalili, The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  22. J.-B. Lamy, Artificial feeding birds (AFB): a new metaheuristic inspired by the behavior of pigeons, in Advances in Nature-Inspired Computing and Applications. (Springer, Berlin, 2019), pp. 43–60

    Chapter  Google Scholar 

  23. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  24. T.C. Bora, L.d.S. Coelho, L. Lebensztajn, Bat-inspired optimization approach for the brushless DC wheel motor problem. IEEE Trans. Magn. 48(2), 947–950 (2012)

    Google Scholar 

  25. M. Issa et al., PID controller tuning parameters using meta-heuristics algorithms: comparative analysis, in Machine Learning Paradigms: Theory and Application. (Springer, Berlin, 2019), pp. 413–430

    Chapter  Google Scholar 

  26. M. Issa, M. Abd Elaziz, Analyzing COVID-19 virus based on enhanced fragmented biological local aligner using improved ions motion optimization algorithm. Appl. Soft Comput. 106683 (2020)

    Google Scholar 

  27. M. Issa et al., ASCA-PSO: adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Syst. Appl. 99, 56–70 (2018)

    Article  Google Scholar 

  28. M. Issa, Expeditious Covid-19 similarity measure tool based on consolidated SCA algorithm with mutation and opposition operators. Appl. Soft Comput. 104, 107197 (2021)

    Google Scholar 

  29. J.S. Pan et al., A multi-objective ions motion optimization for robot path planning, in International Conference on Engineering Research and Applications (Springer, 2018)

    Google Scholar 

  30. A.R. Jordehi, Parameter estimation of solar photovoltaic (PV) cells: a review. Renew. Sustain. Energy Rev. 61, 354–371 (2016)

    Article  Google Scholar 

  31. Z.-L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 19(2), 384–391 (2004)

    Article  Google Scholar 

  32. S. Khubalkar et al., Modeling and control of a permanent-magnet brushless DC motor drive using a fractional order proportional-integral-derivative controller. Turk. J. Electr. Eng. Comput. Sci. 25(5), 4223–4241 (2017)

    Article  Google Scholar 

  33. A. Roy, S. Srivastava, Design of optimal PIλDδ controller for speed control of DC motor using constrained particle swarm optimization, in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT) (IEEE, 2016)

    Google Scholar 

  34. N. Razmjooy et al., Speed control of a DC motor using PID controller based on improved whale optimization algorithm, in Metaheuristics and Optimization in Computer and Electrical Engineering. (Springer, Berlin, 2021), pp. 153–167

    Chapter  Google Scholar 

  35. S. Ekinci, B. Hekimoğlu, D. Izci, Opposition based Henry gas solubility optimization as a novel algorithm for PID control of DC motor. Eng. Sci. Technol. Int. J. 24(2), 331–342 (2021)

    Google Scholar 

  36. D. Potnuru, K.A. Mary, C.S. Babu, Experimental implementation of flower pollination algorithm for speed controller of a BLDC motor. Ain Shams Eng. J. 10(2), 287–295 (2019)

    Article  Google Scholar 

  37. M. Khalilpour et al., Optimal control of DC motor using invasive weed optimization (IWO) algorithm, in Majlesi Conference on Electrical Engineering, Majlesi New Town, Isfahan, Iran (2011)

    Google Scholar 

  38. J. Agarwal et al., Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor. Microsyst. Technol. 24(12), 4997–5006 (2018)

    Article  Google Scholar 

  39. O. Bendjeghaba, Continuous firefly algorithm for optimal tuning of PID controller in AVR system. J. Electr. Eng. 65(1), 44 (2014)

    Google Scholar 

  40. S. Chatterjee, V. Mukherjee, PID controller for automatic voltage regulator using teaching–learning based optimization technique. Int. J. Electr. Power Energy Syst. 77, 418–429 (2016)

    Article  Google Scholar 

  41. A. Moharam, M.A. El-Hosseini, H.A. Ali, Design of optimal PID controller using hybrid differential evolution and particle swarm optimization with an aging leader and challengers. Appl. Soft Comput. 38, 727–737 (2016)

    Article  Google Scholar 

  42. L. Abualigah et al., The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021)

    Google Scholar 

  43. S. Ekinci et al., Speed control of DC motor using improved sine cosine algorithm based PID controller, in 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (IEEE, 2019)

    Google Scholar 

  44. N. Hansen, A. Auger, CMA-ES: evolution strategies and covariance matrix adaptation, in Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation (2011)

    Google Scholar 

  45. L. Syafaah et al., PID designs using DE and PSO algorithms for damping oscillations in a DC motor speed, in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (IEEE, 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Issa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Issa, M. (2022). Parameter Tuning of PID Controller Based on Arithmetic Optimization Algorithm in IOT Systems. In: Houssein, E.H., Abd Elaziz, M., Oliva, D., Abualigah, L. (eds) Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Studies in Computational Intelligence, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-99079-4_15

Download citation

Publish with us

Policies and ethics