Skip to main content

Epithelial Mechanosensing at Cell-Cell Contacts and Tight Junctions

  • Chapter
  • First Online:
Tight Junctions

Abstract

This chapter focuses on the mechanosensitive properties of epithelial tissues. Epithelia experience a range of mechanical forces arising both intrinsically from their constituent cells and extrinsically from forces such as touch or alveolar inflation. We discuss how cell-cell junctions, such as adherens junctions and tight junctions, play key roles in the mechanobiology of epithelial tissues. At these sites, forces are generated through contraction of the actomyosin cytoskeleton and transmitted between neighbouring cells and across tissues by adhesion systems within the junctions. We also consider other potential cellular mechanisms that can allow epithelia to respond to mechanical stresses: mechanosensitive ion channels which are implicated in homeostatic control of cell density via modulation of cell proliferation and live-cell extrusion and caveolae, membrane invaginations that can buffer epithelia in response to change in membrane tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charras, G. and Yap, A. S. (2018) ‘Tensile Forces and Mechanotransduction at Cell–Cell Junctions’, Current Biology, 28(8), pp. R445–R457. https://doi.org/10.1016/j.cub.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  2. Farge, E. (2003) ‘Mechanical Induction of Twist in the Drosophila Foregut/Stomodeal Primordium’, Current Biology, 13(16), pp. 1365–1377. https://doi.org/10.1016/S0960-9822(03)00576-1.

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto, Y. et al. (2019) ‘Mechanical Force Induces Phosphorylation-Mediated Signaling that Underlies Tissue Response and Robustness in Xenopus Embryos’, Cell Systems, 8(3), pp. 226-241.e7. https://doi.org/10.1016/j.cels.2019.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eisenhoffer, G. T. et al. (2012) ‘Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia’, Nature, 484(7395), pp. 546–549. https://doi.org/10.1038/nature10999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marinari, E. et al. (2012) ‘Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding.’, Nature, 484(7395), pp. 542–5. https://doi.org/10.1038/nature10984.

    Article  CAS  PubMed  Google Scholar 

  6. Streichan, S. J. et al. (2014) ‘Spatial constraints control cell proliferation in tissues’, Proceedings of the National Academy of Sciences, 111(15), pp. 5586–5591. https://doi.org/10.1073/pnas.1323016111.

    Article  CAS  Google Scholar 

  7. Gjorevski, N. and Nelson, C. M. (2012) ‘Mapping of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues.’, Biophysical journal, 103(1), pp. 152–62. https://doi.org/10.1016/j.bpj.2012.05.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi, H.-J. et al. (2012) ‘E-catenin is an autoinhibited molecule that coactivates vinculin’, Proceedings of the National Academy of Sciences, 109(22), pp. 8576–8581. https://doi.org/10.1073/pnas.1203906109.

    Article  Google Scholar 

  9. Haas, A. J. et al. (2020) ‘Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly.’, Cell reports, 32(3), p. 107924. https://doi.org/10.1016/j.celrep.2020.107924.

  10. Huveneers, S. et al. (2012) ‘Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling.’, The Journal of cell biology, 196(5), pp. 641–52. https://doi.org/10.1083/jcb.201108120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pokutta, S. et al. (2002) ‘Biochemical and structural definition of the l-afadin- and actin-binding sites of alpha-catenin.’, The Journal of biological chemistry, 277(21), pp. 18868–74. https://doi.org/10.1074/jbc.M201463200.

    Article  CAS  PubMed  Google Scholar 

  12. Spadaro, D. et al. (2017) ‘Tension-Dependent Stretching Activates ZO-1 to Control the Junctional Localization of Its Interactors.’, Current biology: CB, 27(24), pp. 3783-3795.e8. https://doi.org/10.1016/j.cub.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  13. Yao, M. et al. (2014) ‘Force-dependent conformational switch of α-catenin controls vinculin binding.’, Nature communications, 5, p. 4525. https://doi.org/10.1038/ncomms5525.

    Article  CAS  PubMed  Google Scholar 

  14. Yonemura, S. et al. (2010) ‘alpha-Catenin as a tension transducer that induces adherens junction development.’, Nature cell biology, 12(6), pp. 533–42. https://doi.org/10.1038/ncb2055.

    Article  CAS  PubMed  Google Scholar 

  15. Acharya, B. R. et al. (2017) ‘Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility’, Cell Reports, 18(12), pp. 2854–2867. https://doi.org/10.1016/j.celrep.2017.02.078.

    Article  CAS  PubMed  Google Scholar 

  16. Pan, Y. et al. (2016) ‘Differential growth triggers mechanical feedback that elevates Hippo signaling’, Proceedings of the National Academy of Sciences, 113(45), pp. E6974–E6983. https://doi.org/10.1073/pnas.1615012113.

    Article  CAS  Google Scholar 

  17. Dupont, S. et al. (2011) ‘Role of YAP/TAZ in mechanotransduction.’, Nature, 474(7350), pp. 179–83. https://doi.org/10.1038/nature10137.

    Article  CAS  PubMed  Google Scholar 

  18. Irvine, K. D. and Harvey, K. F. (2015) ‘Control of organ growth by patterning and hippo signaling in Drosophila.’, Cold Spring Harbor perspectives in biology, 7(6). https://doi.org/10.1101/cshperspect.a019224.

  19. Wu, Y., Kanchanawong, P. and Zaidel-Bar, R. (2015) ‘Actin-Delimited Adhesion-Independent Clustering of E-Cadherin Forms the Nanoscale Building Blocks of Adherens Junctions’, Developmental Cell, 32(2), pp. 139–154. https://doi.org/10.1016/j.devcel.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  20. Maitre, J.-L. et al. (2012) ‘Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells’, Science, 338(6104), pp. 253–256. https://doi.org/10.1126/science.1225399.

    Article  CAS  PubMed  Google Scholar 

  21. Takeichi, M. (1995) ‘Morphogenetic roles of classic cadherins.’, Current opinion in cell biology, 7(5), pp. 619–27. https://doi.org/10.1016/0955-0674(95)80102-2.

    Article  CAS  PubMed  Google Scholar 

  22. Foty, R. A. and Steinberg, M. S. (2005) ‘The differential adhesion hypothesis: a direct evaluation’, Developmental Biology, 278(1), pp. 255–263. https://doi.org/10.1016/j.ydbio.2004.11.012.

    Article  CAS  PubMed  Google Scholar 

  23. Berx, G. et al. (1995) ‘E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers.’, The EMBO Journal, 14(24), pp. 6107–6115. https://doi.org/10.1002/j.1460-2075.1995.tb00301.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bogenrieder, T. and Herlyn, M. (2003) ‘Axis of evil: molecular mechanisms of cancer metastasis’, Oncogene, 22(42), pp. 6524–6536. https://doi.org/10.1038/sj.onc.1206757.

    Article  CAS  PubMed  Google Scholar 

  25. Li, C. I. (2003) ‘Trends in Incidence Rates of Invasive Lobular and Ductal Breast Carcinoma’, JAMA, 289(11), p. 1421. https://doi.org/10.1001/jama.289.11.1421.

    Article  PubMed  Google Scholar 

  26. Padmanaban, V. et al. (2019) ‘E-cadherin is required for metastasis in multiple models of breast cancer’, Nature, 573(7774), pp. 439–444. https://doi.org/10.1038/s41586-019-1526-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mège, R. M. and Ishiyama, N. (2017) ‘Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions.’, Cold Spring Harbor perspectives in biology, 9(5). https://doi.org/10.1101/cshperspect.a028738.

  28. Knudsen, K. A. et al. (1995) ‘Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin.’, The Journal of cell biology, 130(1), pp. 67–77. https://doi.org/10.1083/jcb.130.1.67.

    Article  CAS  PubMed  Google Scholar 

  29. Nieset, J. E. et al. (1997) ‘Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin.’, Journal of cell science, 110 (Pt 8), pp. 1013–22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9152027.

    Article  CAS  Google Scholar 

  30. Abe, K. and Takeichi, M. (2008) ‘EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt.’, Proceedings of the National Academy of Sciences of the United States of America, 105(1), pp. 13–9. https://doi.org/10.1073/pnas.0710504105.

    Article  PubMed  Google Scholar 

  31. Marie, H. et al. (2003) ‘The LIM protein Ajuba is recruited to cadherin-dependent cell junctions through an association with alpha-catenin.’, The Journal of biological chemistry, 278(2), pp. 1220–8. https://doi.org/10.1074/jbc.M205391200.

    Article  CAS  PubMed  Google Scholar 

  32. Sarpal, R. et al. (2019) ‘Role of α-Catenin and its mechanosensing properties in regulating Hippo/YAP-dependent tissue growth.’, PLoS genetics, 15(11), p. e1008454. https://doi.org/10.1371/journal.pgen.1008454.

  33. Bays, J. L. et al. (2014) ‘Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions.’, The Journal of cell biology, 205(2), pp. 251–63. https://doi.org/10.1083/jcb.201309092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertocchi, C. et al. (2017) ‘Nanoscale architecture of cadherin-based cell adhesions.’, Nature cell biology, 19(1), pp. 28–37. https://doi.org/10.1038/ncb3456.

    Article  CAS  PubMed  Google Scholar 

  35. Hazan, R. B. et al. (1997) ‘Vinculin is associated with the E-cadherin adhesion complex.’, The Journal of biological chemistry, 272(51), pp. 32448–53. https://doi.org/10.1074/jbc.272.51.32448.

    Article  CAS  PubMed  Google Scholar 

  36. Weiss, E. E. et al. (1998) ‘Vinculin is part of the cadherin-catenin junctional complex: complex formation between alpha-catenin and vinculin.’, The Journal of cell biology, 141(3), pp. 755–64. https://doi.org/10.1083/jcb.141.3.755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leerberg, J. M. et al. (2014) ‘Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens.’, Current biology : CB, 24(15), pp. 1689–99. https://doi.org/10.1016/j.cub.2014.06.028.

    Article  CAS  PubMed  Google Scholar 

  38. le Duc, Q. et al. (2010) ‘Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner.’, The Journal of cell biology, 189(7), pp. 1107–15. https://doi.org/10.1083/jcb.201001149.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maddugoda, M. P. et al. (2007) ‘Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell–cell contacts in mammalian epithelial cells’, Journal of Cell Biology, 178(3), pp. 529–540. https://doi.org/10.1083/jcb.200612042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chuan, P., Spudich, J. A. and Dunn, A. R. (2011) ‘Robust mechanosensing and tension generation by myosin VI.’, Journal of molecular biology, 405(1), pp. 105–12. https://doi.org/10.1016/j.jmb.2010.10.010.

    Article  CAS  PubMed  Google Scholar 

  41. Acharya, B. R. et al. (2018) ‘A Mechanosensitive RhoA Pathway that Protects Epithelia against Acute Tensile Stress.’, Developmental cell, 47(4), pp. 439-452.e6. https://doi.org/10.1016/j.devcel.2018.09.016.

    Article  CAS  PubMed  Google Scholar 

  42. Aijaz, S., Balda, M. S. and Matter, K. (2006) ‘Tight junctions: molecular architecture and function.’, International review of cytology, 248, pp. 261–98. https://doi.org/10.1016/S0074-7696(06)48005-0.

    Article  CAS  PubMed  Google Scholar 

  43. Zihni, C. et al. (2016) ‘Tight junctions: from simple barriers to multifunctional molecular gates.’ Nature reviews. Molecular cell biology, 17(9), pp. 564–80. https://doi.org/10.1038/nrm.2016.80.

    Article  CAS  PubMed  Google Scholar 

  44. González-Mariscal, L. et al. (2003) ‘Tight junction proteins.’, Progress in biophysics and molecular biology, 81(1), pp. 1–44. https://doi.org/10.1016/s0079-6107(02)00037-8.

  45. Bazzoni, G. and Dejana, E. (2004) ‘Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis.’, Physiological reviews, 84(3), pp. 869–901. https://doi.org/10.1152/physrev.00035.2003.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia, M. A., Nelson, W. J. and Chavez, N. (2018) ‘Cell-Cell Junctions Organize Structural and Signaling Networks.’, Cold Spring Harbor perspectives in biology, 10(4). https://doi.org/10.1101/cshperspect.a029181.

  47. Cartagena-Rivera, A. X. et al. (2017) ‘Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy.’, Nature communications, 8(1), p. 1030. https://doi.org/10.1038/s41467-017-01145-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi, W. et al. (2016) ‘Remodeling the zonula adherens in response to tension and the role of afadin in this response.’, The Journal of cell biology, 213(2), pp. 243–60. https://doi.org/10.1083/jcb.201506115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fanning, A. S., Van Itallie, C. M. and Anderson, J. M. (2012) ‘Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia.’, Molecular biology of the cell, 23(4), pp. 577–90. https://doi.org/10.1091/mbc.E11-09-0791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hatte, G., Prigent, C. and Tassan, J.-P. (2018) ‘Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue.’, Journal of cell science, 131(3). https://doi.org/10.1242/jcs.208736.

  51. Tornavaca, O. et al. (2015) ‘ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation.’, The Journal of cell biology, 208(6), pp. 821–38. https://doi.org/10.1083/jcb.201404140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Itoh, M. et al. (1997) ‘Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments.’, The Journal of cell biology, 138(1), pp. 181–92. https://doi.org/10.1083/jcb.138.1.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maiers, J. L. et al. (2013) ‘ZO-1 recruitment to α-catenin—a novel mechanism for coupling the assembly of tight junctions to adherens junctions.’, Journal of cell science, 126(Pt 17), pp. 3904–15. https://doi.org/10.1242/jcs.126565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zemljic-Harpf, A. E. et al. (2014) ‘Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes.’, Journal of cell science, 127(Pt 5), pp. 1104–16. https://doi.org/10.1242/jcs.143743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Etournay, R. et al. (2007) ‘Shroom2, a myosin-VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions.’, Journal of cell science, 120(Pt 16), pp. 2838–50. https://doi.org/10.1242/jcs.002568.

    Article  CAS  PubMed  Google Scholar 

  56. Katsube, T. et al. (1998) ‘Cortactin associates with the cell-cell junction protein ZO-1 in both Drosophila and mouse.’, The Journal of biological chemistry, 273(45), pp. 29672–7. https://doi.org/10.1074/jbc.273.45.29672.

    Article  CAS  PubMed  Google Scholar 

  57. Itoh, M. et al. (2012) ‘Rho GTP exchange factor ARHGEF11 regulates the integrity of epithelial junctions by connecting ZO-1 and RhoA-Myosin II signaling’, Proceedings of the National Academy of Sciences, 109(25), pp. 9905–9910. https://doi.org/10.1073/pnas.1115063109.

    Article  Google Scholar 

  58. Otani, T. et al. (2006) ‘Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells.’, The Journal of cell biology, 175(1), pp. 135–46. https://doi.org/10.1083/jcb.200605012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aijaz, S. et al. (2005) ‘Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition.’, Developmental cell, 8(5), pp. 777–86. https://doi.org/10.1016/j.devcel.2005.03.003.

    Article  CAS  PubMed  Google Scholar 

  60. Guillemot, L. et al. (2014) ‘MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly.’, Molecular biology of the cell, 25(13), pp. 1995–2005. https://doi.org/10.1091/mbc.E13-11-0680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Terry, S. J. et al. (2011) ‘Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis.’, Nature cell biology, 13(2), pp. 159–66. https://doi.org/10.1038/ncb2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoffman, B. D. and Yap, A. S. (2015) ‘Towards a Dynamic Understanding of Cadherin-Based Mechanobiology.’, Trends in cell biology, 25(12), pp. 803–814. https://doi.org/10.1016/j.tcb.2015.09.008.

    Article  CAS  PubMed  Google Scholar 

  63. Yap, A. S., Duszyc, K. and Viasnoff, V. (2018) ‘Mechanosensing and Mechanotransduction at Cell-Cell Junctions.’, Cold Spring Harbor perspectives in biology, 10(8). https://doi.org/10.1101/cshperspect.a028761.

  64. Fanning, A. S. et al. (1998) ‘The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton.’, The Journal of biological chemistry, 273(45), pp. 29745–53. https://doi.org/10.1074/jbc.273.45.29745.

    Article  CAS  PubMed  Google Scholar 

  65. Fanning, A. S., Ma, T. Y. and Anderson, J. M. (2002) ‘Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1.’, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 16(13), pp. 1835–7. https://doi.org/10.1096/fj.02-0121fje.

    Article  CAS  Google Scholar 

  66. Lye, M. F. et al. (2010) ‘Insights into regulated ligand binding sites from the structure of ZO-1 Src homology 3-guanylate kinase module.’, The Journal of biological chemistry, 285(18), pp. 13907–17. https://doi.org/10.1074/jbc.M109.093674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sakakibara, S. et al. (2018) ‘Requirement of the F-actin-binding activity of l-afadin for enhancing the formation of adherens and tight junctions’, Genes to Cells, 23(3), pp. 185–199. https://doi.org/10.1111/gtc.12566.

    Article  CAS  PubMed  Google Scholar 

  68. Tanaka-Okamoto, M. et al. (2011) ‘Involvement of afadin in barrier function and homeostasis of mouse intestinal epithelia.’, Journal of cell science, 124(Pt 13), pp. 2231–40. https://doi.org/10.1242/jcs.081000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cordenonsi, M. et al. (1999) ‘Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin.’, The Journal of cell biology, 147(7), pp. 1569–82. https://doi.org/10.1083/jcb.147.7.1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. D’Atri, F. and Citi, S. (2001) ‘Cingulin interacts with F-actin in vitro.’, FEBS letters, 507(1), pp. 21–4. https://doi.org/10.1016/s0014-5793(01)02936-2.

    Article  PubMed  Google Scholar 

  71. Scott, D. W., Tolbert, C. E. and Burridge, K. (2016) ‘Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF.’, Molecular biology of the cell, 27(9), pp. 1420–30. https://doi.org/10.1091/mbc.E15-12-0833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fanning, A. S. and Anderson, J. M. (2009) ‘Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions.’, Annals of the New York Academy of Sciences, 1165, pp. 113–20. https://doi.org/10.1111/j.1749-6632.2009.04440.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Beutel, O. et al. (2019) ‘Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions.’, Cell, 179(4), pp. 923-936.e11. https://doi.org/10.1016/j.cell.2019.10.011.

    Article  CAS  PubMed  Google Scholar 

  74. Schwayer, C. et al. (2019) ‘Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow.’, Cell, 179(4), pp. 937-952.e18. https://doi.org/10.1016/j.cell.2019.10.006.

    Article  CAS  PubMed  Google Scholar 

  75. Vasileva, E. et al. (2020) ‘Cingulin unfolds ZO-1 and organizes myosin-2B and γ-actin to mechanoregulate apical and tight junction membranes’, bioRxiv, p. 2020.05.14.095364. https://doi.org/10.1101/2020.05.14.095364.

  76. Martinac, B. and Kloda, A. (2003) ‘Evolutionary origins of mechanosensitive ion channels’, Progress in Biophysics and Molecular Biology, 82(1–3), pp. 11–24. https://doi.org/10.1016/S0079-6107(03)00002-6.

    Article  CAS  PubMed  Google Scholar 

  77. Bae, C. et al. (2013) ‘Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1’, Proceedings of the National Academy of Sciences, 110(12), pp. E1162–E1168. https://doi.org/10.1073/pnas.1219777110.

    Article  Google Scholar 

  78. Martinac, B. (2014) ‘The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838(2), pp. 682–691. https://doi.org/10.1016/j.bbamem.2013.07.015.

    Article  CAS  Google Scholar 

  79. Kung, C. (2005) ‘A possible unifying principle for mechanosensation.’, Nature, 436(7051), pp. 647–54. https://doi.org/10.1038/nature03896.

    Article  CAS  PubMed  Google Scholar 

  80. Markin, V. S. and Martinac, B. (1991) ‘Mechanosensitive ion channels as reporters of bilayer expansion. A theoretical model.’, Biophysical journal, 60(5), pp. 1120–7. https://doi.org/10.1016/S0006-3495(91)82147-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Martinac, B., Adler, J. and Kung, C. (1990) ‘Mechanosensitive ion channels of E. coli activated by amphipaths.’, Nature, 348(6298), pp. 261–3. https://doi.org/10.1038/348261a0.

    Article  CAS  PubMed  Google Scholar 

  82. Perozo, E. et al. (2002) ‘Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating.’, Nature structural biology, 9(9), pp. 696–703. https://doi.org/10.1038/nsb827.

    Article  CAS  PubMed  Google Scholar 

  83. Teng, J. et al. (2015) ‘The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements.’, Pflugers Archiv: European journal of physiology, 467(1), pp. 27–37. https://doi.org/10.1007/s00424-014-1530-2.

    Article  CAS  PubMed  Google Scholar 

  84. Różycki, B. and Lipowsky, R. (2015) ‘Spontaneous curvature of bilayer membranes from molecular simulations: asymmetric lipid densities and asymmetric adsorption.’, The Journal of chemical physics, 142(5), p. 054101. https://doi.org/10.1063/1.4906149.

  85. Bavi, O. et al. (2016) ‘Influence of Global and Local Membrane Curvature on Mechanosensitive Ion Channels: A Finite Element Approach.’, Membranes, 6(1). https://doi.org/10.3390/membranes6010014.

  86. Chalfie, M. (2009) ‘Neurosensory mechanotransduction.’, Nature reviews. Molecular cell biology, 10(1), pp. 44–52. https://doi.org/10.1038/nrm2595.

    Article  CAS  PubMed  Google Scholar 

  87. Katta, S., Krieg, M. and Goodman, M. B. (2015) ‘Feeling force: physical and physiological principles enabling sensory mechanotransduction.’, Annual review of cell and developmental biology, 31, pp. 347–71. https://doi.org/10.1146/annurev-cellbio-100913-013426.

    Article  CAS  PubMed  Google Scholar 

  88. Sukharev, S. and Corey, D. P. (2004) ‘Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms’, Science Signaling, 2004(219), pp. re4. https://doi.org/10.1126/stke.2192004re4.

    Article  Google Scholar 

  89. Wang, J. et al. (2020) ‘Tethering Piezo channels to the actin cytoskeleton for mechanogating via the E-cadherin-β-catenin mechanotransduction complex’, bioRxiv, p. 2020.05.12.092148. https://doi.org/10.1101/2020.05.12.092148.

  90. Chubinskiy-Nadezhdin, V. I. et al. (2019) ‘Agonist-induced Piezo1 activation suppresses migration of transformed fibroblasts.’, Biochemical and biophysical research communications, 514(1), pp. 173–179. https://doi.org/10.1016/j.bbrc.2019.04.139.

    Article  CAS  PubMed  Google Scholar 

  91. Pardo-Pastor, C. et al. (2018) ‘Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses.’, Proceedings of the National Academy of Sciences of the United States of America, 115(8), pp. 1925–1930. https://doi.org/10.1073/pnas.1718177115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yao, M. et al. (2020) ‘Force-dependent Piezo1 recruitment to focal adhesions regulates adhesion maturation and turnover specifically in non-transformed cells’, bioRxiv, p. 2020.03.09.972307. https://doi.org/10.1101/2020.03.09.972307.

  93. Ranade, S. S., Syeda, R. and Patapoutian, A. (2015) ‘Mechanically Activated Ion Channels.’, Neuron, 87(6), pp. 1162–1179. https://doi.org/10.1016/j.neuron.2015.08.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Coste, B. et al. (2010) ‘Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels’, Science, 330(6000), pp. 55–60. https://doi.org/10.1126/science.1193270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, J. et al. (2014) ‘Piezo1 integration of vascular architecture with physiological force.’, Nature, 515(7526), pp. 279–282. https://doi.org/10.1038/nature13701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ge, J. et al. (2015) ‘Architecture of the mammalian mechanosensitive Piezo1 channel’, Nature, 527(7576), pp. 64–69. https://doi.org/10.1038/nature15247.

    Article  CAS  PubMed  Google Scholar 

  97. Guo, Y. R. and MacKinnon, R. (2017) ‘Structure-based membrane dome mechanism for Piezo mechanosensitivity.’, eLife, 6. https://doi.org/10.7554/eLife.33660.

  98. Zhao, Q. et al. (2018) ‘Structure and mechanogating mechanism of the Piezo1 channel’, Nature, 554(7693), pp. 487–492. https://doi.org/10.1038/nature25743.

    Article  CAS  PubMed  Google Scholar 

  99. Saotome, K. et al. (2018) ‘Structure of the mechanically activated ion channel Piezo1.’, Nature, 554(7693), pp. 481–486. https://doi.org/10.1038/nature25453.

    Article  CAS  PubMed  Google Scholar 

  100. De Vecchis, D., Beech, D. J. and Kalli, A. C. (2021) ‘Molecular dynamics simulations of Piezo1 channel opening by increases in membrane tension.’, Biophysical journal, 120(8), pp. 1510–1521. https://doi.org/10.1016/j.bpj.2021.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Coste, B. et al. (2015) ‘Piezo1 ion channel pore properties are dictated by C-terminal region.’, Nature communications, 6, p. 7223. https://doi.org/10.1038/ncomms8223.

    Article  PubMed  Google Scholar 

  102. Gudipaty, S. A. et al. (2017) ‘Mechanical stretch triggers rapid epithelial cell division through Piezo1’, Nature, 543(7643), pp. 118–121. https://doi.org/10.1038/nature21407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Palade, G. (1953) ‘Fine structures of blood capillaries’, Journal of Applies Physics, 24, p. 1424.

    Google Scholar 

  104. Yamada, E. (1955) ‘The fine structure of the gall bladder epithelium of the mouse’, The Journal of Biophysical and Biochemical Cytology, 1(5), pp. 445–458. https://doi.org/10.1083/jcb.1.5.445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lo, H. P. et al. (2015) ‘The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle.’, The Journal of cell biology, 210(5), pp. 833–49. https://doi.org/10.1083/jcb.201501046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu, Z. et al. (2003) ‘Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion.’, Cancer cell, 4(6), pp. 499–515. https://doi.org/10.1016/s1535-6108(03)00304-0.

    Article  CAS  PubMed  Google Scholar 

  107. Orlichenko, L. et al. (2009) ‘Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation.’, Molecular biology of the cell, 20(19), pp. 4140–52. https://doi.org/10.1091/mbc.e08-10-1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Palacios, F. et al. (2002) ‘ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly.’, Nature cell biology, 4(12), pp. 929–36. https://doi.org/10.1038/ncb881.

    Article  CAS  PubMed  Google Scholar 

  109. Volontè, D., Galbiati, F. and Lisanti, M. P. (1999) ‘Visualization of caveolin-1, a caveolar marker protein, in living cells using green fluorescent protein (GFP) chimeras’, FEBS Letters, 445(2–3), pp. 431–439. https://doi.org/10.1016/S0014-5793(99)00164-7.

    Article  PubMed  Google Scholar 

  110. Teo, J. L. et al. (2020) ‘Caveolae Control Contractile Tension for Epithelia to Eliminate Tumor Cells.’, Developmental cell, 54(1), pp. 75-91.e7. https://doi.org/10.1016/j.devcel.2020.05.002.

    Article  CAS  PubMed  Google Scholar 

  111. Janshoff, A. and Steinem, C. (2015) ‘Mechanics of lipid bilayers: What do we learn from pore-spanning membranes?’, Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1853(11), pp. 2977–2983. https://doi.org/10.1016/j.bbamcr.2015.05.029.

    Article  CAS  Google Scholar 

  112. Sinha, B. et al. (2011) ‘Cells respond to mechanical stress by rapid disassembly of caveolae.’, Cell, 144(3), pp. 402–13. https://doi.org/10.1016/j.cell.2010.12.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seemann, E. et al. (2017) ‘Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination’, eLife, 6. https://doi.org/10.7554/eLife.29854.

  114. Dulhunty, A. F. and Franzini-Armstrong, C. (1975) ‘The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths.’, The Journal of physiology, 250(3), pp. 513–39. https://doi.org/10.1113/jphysiol.1975.sp011068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Prescott, L and Brightman, M. W. (1976a) ‘The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations.’, Tissue & cell, 8(2), pp. 241–58. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18631588.

  116. Cheng, J. P. X. et al. (2015) ‘Caveolae protect endothelial cells from membrane rupture during increased cardiac output.’, The Journal of cell biology, 211(1), pp. 53–61. https://doi.org/10.1083/jcb.201504042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Garcia, J. et al. (2017) ‘Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord.’, Current biology : CB, 27(13), pp. 1982-1989.e3. https://doi.org/10.1016/j.cub.2017.05.035.

    Article  CAS  PubMed  Google Scholar 

  118. Lim, Y.-W. et al. (2017) ‘Caveolae Protect Notochord Cells against Catastrophic Mechanical Failure during Development’, Current Biology, 27(13), pp. 1968-1981.e7. https://doi.org/10.1016/j.cub.2017.05.067.

    Article  CAS  PubMed  Google Scholar 

  119. Golani, G. et al. (2019) ‘Membrane Curvature and Tension Control the Formation and Collapse of Caveolar Superstructures’, Developmental Cell, 48(4), pp. 523-538.e4. https://doi.org/10.1016/j.devcel.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  120. Pelkmans, L. and Zerial, M. (2005) ‘Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae.’, Nature, 436(7047), pp. 128–33. https://doi.org/10.1038/nature03866.

    Article  CAS  PubMed  Google Scholar 

  121. Echarri, A. et al. (2019) ‘An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation.’, Nature communications, 10(1), p. 5828. https://doi.org/10.1038/s41467-019-13782-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boyd, N. L. et al. (2003) ‘Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells’, American Journal of Physiology-Heart and Circulatory Physiology, 285(3), pp. H1113–H1122. https://doi.org/10.1152/ajpheart.00302.2003.

    Article  CAS  PubMed  Google Scholar 

  123. Rizzo, V. et al. (1998) ‘In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association.’, The Journal of biological chemistry, 273(52), pp. 34724–9. https://doi.org/10.1074/jbc.273.52.34724.

    Article  CAS  PubMed  Google Scholar 

  124. Trouet, D. et al. (1999) ‘Caveolin-1 modulates the activity of the volume-regulated chloride channel.’, The Journal of physiology 520 Pt 1, pp. 113–9. https://doi.org/10.1111/j.1469-7793.1999.t01-1-00113.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Morén, B. et al. (2012) ‘EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization.’, Molecular biology of the cell, 23(7), pp. 1316–29. https://doi.org/10.1091/mbc.E11-09-0787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Torrino, S. et al. (2018) ‘EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription’, Journal of Cell Biology, 217(12), pp. 4092–4105. https://doi.org/10.1083/jcb.201801122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kawamura, S., Miyamoto, S. and Brown, J. H. (2003) ‘Initiation and Transduction of Stretch-induced RhoA and Rac1 Activation through Caveolae’, Journal of Biological Chemistry, 278(33), pp. 31111–31117. https://doi.org/10.1074/jbc.M300725200.

    Article  CAS  PubMed  Google Scholar 

  128. Nomura, R. and Fujimoto, T. (1999) ‘Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization.’, Molecular biology of the cell, 10(4), pp. 975–86. https://doi.org/10.1091/mbc.10.4.975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Radel, C. and Rizzo, V. (2005) ‘Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization.’, American journal of physiology. Heart and circulatory physiology, 288(2), pp. H936-45. https://doi.org/10.1152/ajpheart.00519.2004.

    Article  CAS  PubMed  Google Scholar 

  130. Peng, F. et al. (2007) ‘RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction.’, Journal of the American Society of Nephrology : JASN, 18(1), pp. 189–98. https://doi.org/10.1681/ASN.2006050498.

    Article  CAS  PubMed  Google Scholar 

  131. Grande-García, A. et al. (2007) ‘Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases’, Journal of Cell Biology, 177(4), pp. 683–694. https://doi.org/10.1083/jcb.200701006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hetmanski, J. H. R. et al. (2019) ‘Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration.’, Developmental cell, 51(4), pp. 460-475.e10. https://doi.org/10.1016/j.devcel.2019.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ariotti, N. et al. (2014) ‘Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling’, Journal of Cell Biology, 204(5), pp. 777–792. https://doi.org/10.1083/jcb.201307055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Boopathy, G. T. K. and Hong, W. (2019) ‘Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis’, Frontiers in Cell and Developmental Biology, 7. https://doi.org/10.3389/fcell.2019.00049.

  135. Ibar, C. et al. (2018) ‘Tension-dependent regulation of mammalian Hippo signaling through LIMD1’, Journal of Cell Science, 131(5). https://doi.org/10.1242/jcs.214700.

  136. Zhao, B. et al. (2007) ‘Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control.’, Genes & development, 21(21), pp. 2747–61. https://doi.org/10.1101/gad.1602907.

    Article  CAS  Google Scholar 

  137. Moreno-Vicente, R. et al. (2018) ‘Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP.’, Cell reports, 25(6), pp. 1622-1635.e6. https://doi.org/10.1016/j.celrep.2018.10.024.

    Article  CAS  PubMed  Google Scholar 

  138. Rausch, V. et al. (2019) ‘The Hippo Pathway Regulates Caveolae Expression and Mediates Flow Response via Caveolae’, Current Biology, 29(2), pp. 242-255.e6. https://doi.org/10.1016/j.cub.2018.11.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu, J. (2006) ‘Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels’, Journal of Clinical Investigation, 116(5), pp. 1284–1291. https://doi.org/10.1172/JCI27100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, H. J. et al. (2017) ‘Fluid shear stress activates YAP1 to promote cancer cell motility’, Nature Communications, 8(1), p. 14122. https://doi.org/10.1038/ncomms14122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, K.-C. et al. (2016) ‘Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis’, Proceedings of the National Academy of Sciences, 113(41), pp. 11525–11530. https://doi.org/10.1073/pnas.1613121113.

    Article  CAS  Google Scholar 

  142. Rausch, V. and Hansen, C. G. (2020) ‘The Hippo Pathway, YAP/TAZ, and the Plasma Membrane’, Trends in Cell Biology, 30(1), pp. 32–48. https://doi.org/10.1016/j.tcb.2019.10.005.

    Article  CAS  PubMed  Google Scholar 

  143. Munjal, A. et al. (2015) ‘A self-organized biomechanical network drives shape changes during tissue morphogenesis.’, Nature, 524(7565), pp. 351–5. https://doi.org/10.1038/nature14603.

    Article  CAS  PubMed  Google Scholar 

  144. Priya, R. et al. (2015) ‘Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions.’, Nature cell biology, 17(10), pp. 1282–93. https://doi.org/10.1038/ncb3239.

    Article  CAS  PubMed  Google Scholar 

  145. He, W.-Q. et al. (2020) ‘Contributions of Myosin Light Chain Kinase to Regulation of Epithelial Paracellular Permeability and Mucosal Homeostasis.’, International journal of molecular sciences, 21(3). https://doi.org/10.3390/ijms21030993.

Download references

Acknowledgements

The authors were supported by grants and fellowships from the National Health and Medical Research Council of Australia (GNT1164462, 1136592 to ASY; APP1156489 to RGP; GNT1140090 to ASY and RGP) and the Australian Research Council (DP19010287 to ASY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpha S. Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brooks, J.W., Parton, R.G., Yap, A.S., Duszyc, K. (2022). Epithelial Mechanosensing at Cell-Cell Contacts and Tight Junctions. In: González-Mariscal, L. (eds) Tight Junctions. Springer, Cham. https://doi.org/10.1007/978-3-030-97204-2_3

Download citation

Publish with us

Policies and ethics