Skip to main content

Latest Trends in Gait Analysis Using Deep Learning Techniques: A Systematic Review

  • Conference paper
  • First Online:
Artificial Intelligence and Speech Technology (AIST 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1546))

Abstract

Marker-less analysis of human gait has made considerable progress in recent years. However, developing a gait analysis system capable of extracting reliable and precise kinematic data in a standard and unobtrusive manner remains an open challenge. This narrative review considers the transformation of methods for extracting gait extremity information from videos or images, perceived how analysis methods have improved from arduous manual procedures to semi-objective and objective marker-based systems and then marker-less systems. The gait analysis systems widely used restrict the analysis process with the use of markers, inhibited environmental conditions, and long processing duration. Such limitations can impede the use of a gait analysis system in multiple applications. Advancement in marker-less pose estimation and Q-learning-based techniques are opening the possibility of adopting productive methods for estimating precise poses of humans and information of movement from video frames. Vision-Based gait analysis techniques are capable of providing a cost-effective, unobtrusive solution for estimation of stick images and thus the analysis of the gait. This work provides a comprehensive review of marker-less computer vision and deep neural network-based gait analysis, parameters, design specifications, and the latest trends. This survey provides a birds-eye view of the domain. This review aims to introduce the latest trends in gait analysis using computer vision methods thus provide a single platform to learn various marker-less methods for the analysis of the gait that is likely to have a future impact in bio-mechanics while considering the challenges with accuracy and robustness that are yet to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahad, M.A.R., et al.: Wearable sensor-based gait analysis for age and gender estimation. Sensors 20(8) (2020). https://www.mdpi.com/1424-8220/20/8/2424

  2. Alnowami, M., Khan, A., Morfeq, A.H., Alothmany, N., Hafez, E.A.: Feasibility study of markerless gait tracking using kinect. Life Sci. J. 11(7), 514–523 (2014)

    Google Scholar 

  3. Alonge, F., Cucco, E., D’Ippolito, F., Pulizzotto, A.: The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis. Sensors 14(5), 8430–8446 (2014)

    Article  Google Scholar 

  4. André, J., et al.: Markerless gait analysis vision system for real-time gait monitoring. In: 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 269–274 (2020). https://doi.org/10.1109/ICARSC49921.2020.9096121

  5. Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4733–4742 (2016)

    Google Scholar 

  6. Castelli, A., Paolini, G., Cereatti, A., Della Croce, U.: A 2D markerless gait analysis methodology: validation on healthy subjects. Comput. Math. Methods Med. 2015 (2015)

    Google Scholar 

  7. Colyer, S.L., Evans, M., Cosker, D.P., Salo, A.I.: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med.-Open 4(1), 1–15 (2018)

    Article  Google Scholar 

  8. Goffredo, M., Carter, J.N., Nixon, M.S.: 2D markerless gait analysis. In: Vander Sloten, J., Verdonck, P., Nyssen, M., Haueisen, J. (eds.) 4th European Conference of the International Federation for Medical and Biological Engineering. IFMBE, vol. 22, pp. 67–71. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89208-3_18

  9. Goffredo, M., Seely, R.D., Carter, J.N., Nixon, M.S.: Markerless view independent gait analysis with self-camera calibration. In: 2008 8th IEEE International Conference on Automatic Face Gesture Recognition, pp. 1–6 (2008). https://doi.org/10.1109/AFGR.2008.4813366

  10. Gu, X., Deligianni, F., Lo, B., Chen, W., Yang, G.: Markerless gait analysis based on a single RGB camera. In: 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 42–45 (2018). https://doi.org/10.1109/BSN.2018.8329654

  11. Gu, X., Deligianni, F., Lo, B., Chen, W., Yang, G.Z.: Markerless gait analysis based on a single RGB camera. In: 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 42–45. IEEE (2018)

    Google Scholar 

  12. Guffanti, D., Brunete, A., Hernando, M.: Non-invasive multi-camera gait analysis system and its application to gender classification. IEEE Access 8, 95734–95746 (2020)

    Article  Google Scholar 

  13. Guo, Y., Deligianni, F., Gu, X., Yang, G.Z.: 3-D canonical pose estimation and abnormal gait recognition with a single RGB-D camera. IEEE Robot. Autom. Lett. 4(4), 3617–3624 (2019)

    Article  Google Scholar 

  14. Huynh-The, T., Hua, C.H., Tu, N.A., Kim, D.S.: Learning 3D spatiotemporal gait feature by convolutional network for person identification. Neurocomputing 397, 192–202 (2020)

    Article  Google Scholar 

  15. Jun, K., Lee, Y., Lee, S., Lee, D.W., Kim, M.S.: Pathological gait classification using Kinect v2 and gated recurrent neural networks. IEEE Access 8, 139881–139891 (2020)

    Article  Google Scholar 

  16. Kidziński, Ł, Yang, B., Hicks, J.L., Rajagopal, A., Delp, S.L., Schwartz, M.H.: Deep neural networks enable quantitative movement analysis using single-camera videos. Nat. Commun. 11(1), 1–10 (2020)

    Article  Google Scholar 

  17. Luo, J., Tjahjadi, T.: Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation. IEEE Access 8, 32485–32501 (2020)

    Article  Google Scholar 

  18. Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4903–4911 (2017)

    Google Scholar 

  19. Ramirez-Bautista, J.A., Huerta-Ruelas, J.A., Chaparro-Cárdenas, S.L., Hernández-Zavala, A.: A review in detection and monitoring gait disorders using in-shoe plantar measurement systems. IEEE Rev. Biomed. Eng. 10, 299–309 (2017). https://doi.org/10.1109/RBME.2017.2747402

    Article  Google Scholar 

  20. Rohan, A., Rabah, M., Hosny, T., Kim, S.H.: Human pose estimation-based real-time gait analysis using convolutional neural network. IEEE Access 8, 191542–191550 (2020)

    Article  Google Scholar 

  21. Rohan, A., Rabah, M., Hosny, T., Kim, S.H.: Human pose estimation-based real-time gait analysis using convolutional neural network. IEEE Access 8, 191542–191550 (2020). https://doi.org/10.1109/ACCESS.2020.3030086

    Article  Google Scholar 

  22. Saboor, A., et al.: Latest research trends in gait analysis using wearable sensors and machine learning: a systematic review. IEEE Access 8, 167830–167864 (2020). https://doi.org/10.1109/ACCESS.2020.3022818

    Article  Google Scholar 

  23. Steinert, A., Sattler, I., Otte, K., Röhling, H., Mansow-Model, S., Müller-Werdan, U.: Using new camera-based technologies for gait analysis in older adults in comparison to the established GAITRite system. Sensors 20(1) (2020). https://doi.org/10.3390/s20010125. https://www.mdpi.com/1424-8220/20/1/125

  24. Swanson, C.W., Haigh, Z.J., Fling, B.W.: Two-minute walk tests demonstrate similar age-related gait differences as a six-minute walk test. Gait Posture 69, 36–39 (2019)

    Article  Google Scholar 

  25. Tompson, J.J.R.: Localization of humans in images using convolutional networks. Ph.D. thesis, New York University (2015)

    Google Scholar 

  26. Tong, K., Granat, M.H.: A practical gait analysis system using gyroscopes. Med. Eng. Phys. 21(2), 87–94 (1999)

    Article  Google Scholar 

  27. Vilas-Boas, M.d.C., et al.: Validation of a single RGB-D camera for gait assessment of polyneuropathy patients. Sensors 19(22), 4929 (2019)

    Google Scholar 

  28. Vishnoi, N., Mitra, A., Duric, Z., Gerber, N.L.: Motion based markerless gait analysis using standard events of gait and ensemble Kalman filtering. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2512–2516 (2014). https://doi.org/10.1109/EMBC.2014.6944133

  29. Yoo, J.H., Nixon, M.S.: Automated markerless analysis of human gait motion for recognition and classification. ETRI J. 33(2), 259–266 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sethi, D., Prakash, C., Bharti, S. (2022). Latest Trends in Gait Analysis Using Deep Learning Techniques: A Systematic Review. In: Dev, A., Agrawal, S.S., Sharma, A. (eds) Artificial Intelligence and Speech Technology. AIST 2021. Communications in Computer and Information Science, vol 1546. Springer, Cham. https://doi.org/10.1007/978-3-030-95711-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95711-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95710-0

  • Online ISBN: 978-3-030-95711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics