Skip to main content

Deep Reinforcement Learning for FlipIt Security Game

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1072))

Included in the following conference series:

Abstract

Reinforcement learning has shown much success in games such as chess, backgammon and Go [21, 22, 24]. However, in most of these games, agents have full knowledge of the environment at all times. In this paper, we describe a deep learning model in which agents successfully adapt to different classes of opponents and learn the optimal counter-strategy using reinforcement learning in a game under partial observability. We apply our model to \(\mathsf {FlipIt}\) [25], a two-player security game in which both players, the attacker and the defender, compete for ownership of a shared resource and only receive information on the current state of the game upon making a move. Our model is a deep neural network combined with Q-learning and is trained to maximize the defender’s time of ownership of the resource. Despite the noisy information, our model successfully learns a cost-effective counter-strategy outperforming its opponent’s strategies and shows the advantages of the use of deep reinforcement learning in game theoretic scenarios. We also extend \(\mathsf {FlipIt}\) to a larger action-spaced game with the introduction of a new lower-cost move and generalize the model to n-player \(\mathsf {FlipIt}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alpcan, T., Basar, M.: Network Security: A Decision and Game-Theoretic Approach. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2016)

    Article  Google Scholar 

  3. Ding, D., Han, Q.-L., Xiang, Y., Ge, X., Zhang, X.-M.: A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing 275, 1674–1683 (2018)

    Article  Google Scholar 

  4. Falliere, N., Murchu, L.O., Chien, E.: W32. Stuxnet dossier. Symantec White Paper (2011)

    Google Scholar 

  5. Feng, X., Zheng, Z., Hu, P., Cansever, D., Mohapatra, P.: Stealthy attacks meets insider threats: a three-player game model. In: IEEE Military Communications Conference (MILCOM), pp. 25–30, October 2015

    Google Scholar 

  6. Gueye, A., Marbukh, V., Walrand, J.C.: Towards a metric for communication network vulnerability to attacks: a game theoretic approach. In: Krishnamurthy, V., Zhao, Q., Huang, M., Wen, Y. (eds.) GameNets 2012. LNICST, vol. 105, pp. 259–274. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35582-0_20

    Chapter  MATH  Google Scholar 

  7. Hu, P., Li, H., Fu, H., Cansever, D., Mohapatra, P.: Dynamic defense strategy against advanced persistent threat with insiders. In: IEEE Conference on Computer Communications (INFOCOM), pp. 747–755, April 2015

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  9. Kunreuther, H., Heal, G.: Interdependent security. J. Risk Uncertain. 26(2), 231–249 (2003)

    Article  MATH  Google Scholar 

  10. Laszka, A., Horvath, G., Felegyhazi, M., Buttyán, L.: FlipThem: modeling targeted attacks with , for multiple resources. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp. 175–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12601-2_10

    Chapter  MATH  Google Scholar 

  11. Laszka, A., Johnson, B., Grossklags, J.: Mitigating covert compromises. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 319–332. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45046-4_26

    Chapter  MATH  Google Scholar 

  12. Laszka, A., Johnson, B., Grossklags, J.: Mitigation of targeted and non-targeted covert attacks as a timing game. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M. (eds.) GameSec 2013. LNCS, vol. 8252, pp. 175–191. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02786-9_11

    Chapter  MATH  Google Scholar 

  13. Milosevic, N., Dehghantanha, A., Choo, K.-K.: Machine learning aided android malware classification. Comput. Electr. Eng. 61, 266–274 (2017)

    Article  Google Scholar 

  14. Mnih, V., et al.: Playing atari with deep reinforcement learning. CoRR, abs/1312.5602 (2013)

    Google Scholar 

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  16. Oakley, L., Oprea, A.: \(\sf QFlip\): an adaptive reinforcement learning strategy for the \(\sf FlipIt\) security game. In: Alpcan, T., Vorobeychik, Y., Baras, J.S., Dán, G. (eds.) GameSec 2019. LNCS, vol. 11836, pp. 364–384. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32430-8_22

    Chapter  MATH  Google Scholar 

  17. Paszke, A., et al.: Automatic differentiation in pytorch. In: Neural Information Processing Systems (2017)

    Google Scholar 

  18. Pham, V., Cid, C.: Are we compromised? Modelling security assessment games. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 234–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34266-0_14

    Chapter  MATH  Google Scholar 

  19. Schwartz, N.D., Drew, C.: RSA faces angry users after breach. New York Times, page B1, 8 June 2011

    Google Scholar 

  20. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  21. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  24. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM 38(3), 58–68 (1995)

    Article  Google Scholar 

  25. van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: Flipit: the game of “stealthy takeover’’. J. Cryptology 26(4), 655–713 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Z., et al.: Sample efficient actor-critic with experience replay. CoRR abs/1611.01224 (2016)

    Google Scholar 

  27. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    Article  MATH  Google Scholar 

  28. Xiao, L., Wan, X., Lu, X., Zhang, Y., Wu, D.: IoT security techniques based on machine learning. ArXiv abs/1801.06275 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Greige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Greige, L., Chin, P. (2022). Deep Reinforcement Learning for FlipIt Security Game. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-93409-5_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93409-5_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93408-8

  • Online ISBN: 978-3-030-93409-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics