Skip to main content

Technology in Oral and Maxillofacial Reconstruction

  • Chapter
  • First Online:
Peterson’s Principles of Oral and Maxillofacial Surgery

Abstract

Recent advancements in oral and maxillofacial surgery include the use of virtual environments for the purposes of surgical planning, patient education, and surgical training. Digital technology such as computer-aided design and computer-aided modeling software programs assists with three-dimensional analysis and surgical planning for complex deformities. Higher-resolution and more efficient imaging techniques such as surface imaging and high-resolution three-dimensional computed tomography have allowed precision for fabricating exceptionally accurate customized surgical models and guides, and the use of intraoperative navigation allowing the surgeon to take their virtual plan into the real-life surgical environment. These technological advances are particularly useful in the reconstruction of congenital and acquired craniomaxillofacial anomalies, head and neck oncologic and reconstructive surgery, the management of craniomaxillofacial trauma, temporomandibular joint surgery, and orthognathic surgery. This chapter discusses the use of these technologies, as well as their advantages and draw back.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwenzer-Zimmerer K, Boerner BI, Schwenzer NF, et al. Facial acquisition by dynamic optical tracked laser imaging: a new approach. J Plast Reconstr Aesthet Surg. 2009;62:1181–6.

    Article  CAS  PubMed  Google Scholar 

  2. Schwenzer-Zimmerer K, Chaitidis D, Berg-Boerner I, et al. Quantitative 3D soft tissue analysis of symmetry prior to and after unilateral cleft lip repair compared with non-cleft persons (performed in Cambodia). J Craniomaxillofac Surg. 2008;36:431–8.

    Article  PubMed  Google Scholar 

  3. Schwenzer-Zimmerer K, Chaitidis D, Boerner I, et al. Systematic contact-free 3D topometry of the soft tissue profile in cleft lips. Cleft Palate Craniofac J. 2008;45:607–13.

    Article  PubMed  Google Scholar 

  4. Altobelli DE, Kikinis R, Mulliken JB, Cline H, Lorensen W, Jolesz F. Computer-assisted three-dimensional planning in craniofacial surgery. Plast Reconstr Surg. 1993;92:576–85; discussion 586–577.

    Article  CAS  PubMed  Google Scholar 

  5. Girod S, Keeve E, Girod B. Advances in interactive craniofacial surgery planning by 3D simulation and visualization. Int J Oral Maxillofac Surg. 1995;24:120–5.

    Article  CAS  PubMed  Google Scholar 

  6. Vannier MW, Marsh JL, Warren JO. Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology. 1984;150:179–84.

    Article  CAS  PubMed  Google Scholar 

  7. Bohner P, Holler C, Hassfeld S. Operation planning in craniomaxillofacial surgery. Comput Aided Surg. 1997;2:153–61.

    Article  CAS  PubMed  Google Scholar 

  8. Zizelmann C, Gellrich NC, Metzger MC, Schoen R, Schmelzeisen R, Schramm A. Computer-assisted reconstruction of orbital floor based on cone beam tomography. Br J Oral Maxillofac Surg. 2007;45:79–80.

    Article  PubMed  Google Scholar 

  9. Pham AM, Rafii AA, Metzger MC, Jamali A, Strong EB. Computer modeling and intraoperative navigation in maxillofacial surgery. Otolaryngol Head Neck Surg. 2007;137:624–31.

    Article  PubMed  Google Scholar 

  10. Ettinger KS, Alexander AE, Arce K. Computed tomographic angiography perforator localization for virtual surgical planning of osteocutaneous fibular free flaps in head and neck reconstruction. J Oral Maxillofac Surg. 2018;76:2220–30.

    Article  PubMed  Google Scholar 

  11. Hemmy DC, David DJ, Herman GT. Three-dimensional reconstruction of craniofacial deformity using computed tomography. Neurosurgery. 1983;13:534–41.

    Article  CAS  PubMed  Google Scholar 

  12. Gillespie JE, Isherwood I. Three-dimensional anatomical images from computed tomographic scans. Br J Radiol. 1986;59:289–92.

    Article  CAS  PubMed  Google Scholar 

  13. Bill JS, Reuther JF, Dittmann W, et al. Stereolithography in oral and maxillofacial operation planning. Int J Oral Maxillofac Surg. 1995;24:98–103.

    Article  CAS  PubMed  Google Scholar 

  14. Klein HM, Schneider W, Alzen G, Voy ED, Gunther RW. Pediatric craniofacial surgery: comparison of milling and stereolithography for 3D model manufacturing. Pediatr Radiol. 1992;22:458–60.

    Article  CAS  PubMed  Google Scholar 

  15. Lambrecht JT, Brix F. Individual skull model fabrication for craniofacial surgery. Cleft Palate J. 1990;27:382–5. discussion 386-387

    CAS  PubMed  Google Scholar 

  16. Sinn DP, Cillo JE Jr, Miles BA. Stereolithography for craniofacial surgery. J Craniofac Surg. 2006;17:869–75.

    Article  PubMed  Google Scholar 

  17. Chang PS, Parker TH, Patrick CW Jr, Miller MJ. The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg. 2003;14:164–70.

    Article  PubMed  Google Scholar 

  18. Kleinman A, Leyva F, Lozada J, Patel RD. Loma Linda guide: a stereolithographically designed surgical template: technique paper. J Oral Implantol. 2009;35:238–44.

    Article  PubMed  Google Scholar 

  19. Kim SH, Kang JM, Choi B, Nelson G. Clinical application of a stereolithographic surgical guide for simple positioning of orthodontic mini-implants. World J Orthod. 2008;9:371–82.

    PubMed  Google Scholar 

  20. Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg. 2007;18:740–7.

    Article  PubMed  Google Scholar 

  21. Hidalgo HM, Romo GW, Estolano RT. Stereolithography: a method for planning the surgical correction of the hypertelorism. J Craniofac Surg. 2009;20:1473–7.

    Article  PubMed  Google Scholar 

  22. Ekstrand K, Hirsch JM. Malignant tumors of the maxilla: virtual planning and real-time rehabilitation with custom-made R-zygoma fixtures and carbon-graphite fiber-reinforced polymer prosthesis. Clin Implant Dent Relat Res. 2008;10:23–9.

    Article  PubMed  Google Scholar 

  23. Bell RB, Markiewicz MR. Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg. 2009;67:2559–70.

    Article  PubMed  Google Scholar 

  24. Xia JJ, Gateno J, Teichgraeber JF, et al. Accuracy of the computer-aided surgical simulation (CASS) system in the treatment of patients with complex craniomaxillofacial deformity: a pilot study. J Oral Maxillofac Surg. 2007;65:248–54.

    Article  PubMed  Google Scholar 

  25. Schramm A, Gellrich NC, Schmelzeisen R. Navigational surgery of the facial skeleton. Berlin/New York: Springer; 2007: x, 170 p.

    Google Scholar 

  26. Smith JS, Quinones-Hinojosa A, Barbaro NM, McDermott MW. Frame-based stereotactic biopsy remains an important diagnostic tool with distinct advantages over frameless stereotactic biopsy. J Neuro-Oncol. 2005;73:173–9.

    Article  Google Scholar 

  27. Barnett GH, Miller DW, Weisenberger J. Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases. J Neurosurg. 1999;91:569–76.

    Article  CAS  PubMed  Google Scholar 

  28. Brinker T, Arango G, Kaminsky J, et al. An experimental approach to image guided skull base surgery employing a microscope-based neuronavigation system. Acta Neurochir. 1998;140:883–9.

    Article  CAS  PubMed  Google Scholar 

  29. Freysinger W, Gunkel AR, Bale R, et al. Three-dimensional navigation in otorhinolaryngological surgery with the viewing wand. Ann Otol Rhinol Laryngol. 1998;107:953–8.

    Article  CAS  PubMed  Google Scholar 

  30. Gregoire C, Adler D, Madey S, Bell RB. Basosquamous carcinoma involving the anterior skull base: a neglected tumor treated using intraoperative navigation as a guide to achieve safe resection margins. J Oral Maxillofac Surg. 2010;

    Google Scholar 

  31. Taub PJ, Narayan P. Surgical navigation technology for treatment of pneumosinus dilatans. Cleft Palate Craniofac J. 2007;44:562–6.

    Article  PubMed  Google Scholar 

  32. Marmulla R, Niederdellmann H. Computer-assisted bone segment navigation. J Craniomaxillofac Surg. 1998;26:347–59.

    Article  CAS  PubMed  Google Scholar 

  33. Luebbers HT, Messmer P, Obwegeser JA, et al. Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery. J Craniomaxillofac Surg. 2008;36:109–16.

    Article  PubMed  Google Scholar 

  34. Gruss JS, Van Wyck L, Phillips JH, Antonyshyn O. The importance of the zygomatic arch in complex midfacial fracture repair and correction of posttraumatic orbitozygomatic deformities. Plast Reconstr Surg. 1990;85:878–90.

    Article  CAS  PubMed  Google Scholar 

  35. Bogusiak K, Arkuszewski P. Characteristics and epidemiology of zygomaticomaxillary complex fractures. J Craniofac Surg. 2010;21:1018–23.

    Article  PubMed  Google Scholar 

  36. Manson PN, Clifford CM, Su CT, Iliff NT, Morgan R. Mechanisms of global support and posttraumatic enophthalmos: I. The anatomy of the ligament sling and its relation to intramuscular cone orbital fat. Plast Reconstr Surg. 1986;77:193–202.

    Article  CAS  PubMed  Google Scholar 

  37. Ploder O, Klug C, Voracek M, Burggasser G, Czerny C. Evaluation of computer-based area and volume measurement from coronal computed tomography scans in isolated blowout fractures of the orbital floor. J Oral Maxillofac Surg. 2002;60:1267–72; discussion 1273–1264.

    Article  PubMed  Google Scholar 

  38. Dolynchuk KN, Tadjalli HE, Manson PN. Orbital volumetric analysis: clinical application in orbitozygomatic complex injuries. J Craniomaxillofac Trauma. 1996;2:56–63; discussion 64.

    CAS  PubMed  Google Scholar 

  39. Manson PN, Grivas A, Rosenbaum A, Vannier M, Zinreich J, Iliff N. Studies on enophthalmos: II. The measurement of orbital injuries and their treatment by quantitative computed tomography. Plast Reconstr Surg. 1986;77:203–14.

    Article  CAS  PubMed  Google Scholar 

  40. Raskin EM, Millman AL, Lubkin V, della Rocca RC, Lisman RD, Maher EA. Prediction of late enophthalmos by volumetric analysis of orbital fractures. Ophthal Plast Reconstr Surg. 1998;14:19–26.

    Article  CAS  PubMed  Google Scholar 

  41. Markiewicz MR, Dierks EJ, Bell RB. Does intraoperative navigation restore orbital dimensions in traumatic and post-ablative defects? J Cranio Maxillofac Surg. 2012;40:142–8.

    Article  Google Scholar 

  42. Markiewicz MR, Dierks EJ, Potter BE, Bell RB. Reliability of intraoperative navigation in restoring normal orbital dimensions. J Oral Maxillofac Surg. 2011;69:2833–40.

    Article  PubMed  Google Scholar 

  43. Hammer B, Kunz C, Schramm A, deRoche R, Prein J. Repair of complex orbital fractures: technical problems, state-of-the-art solutions and future perspectives. Ann Acad Med Singap. 1999;28:687–91.

    CAS  PubMed  Google Scholar 

  44. Gellrich NC, Schramm A, Hammer B, et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg. 2002;110:1417–29.

    PubMed  Google Scholar 

  45. Yu H, Shen G, Wang X, Zhang S. Navigation-guided reduction and orbital floor reconstruction in the treatment of zygomatic-orbital-maxillary complex fractures. J Oral Maxillofac Surg. 2010;68:28–34.

    Article  PubMed  Google Scholar 

  46. Ploder O, Klug C, Backfrieder W, Voracek M, Czerny C, Tschabitscher M. 2D- and 3D-based measurements of orbital floor fractures from CT scans. J Craniomaxillofac Surg. 2002;30:153–9.

    Article  PubMed  Google Scholar 

  47. Ploder O, Klug C, Voracek M, et al. A computer-based method for calculation of orbital floor fractures from coronal computed tomography scans. J Oral Maxillofac Surg. 2001;59:1437–42.

    Article  CAS  PubMed  Google Scholar 

  48. Markiewicz MR, Dierks EJ, Bell RB. The effectiveness and reliability of computer assisted orbital surgery in restoring orbital dimensions in post-traumatic and post-ablative defects in: American Association of Oral and Maxillofacial Surgeons Annual Meeting 2010.

    Google Scholar 

  49. Walter WL. Early surgical repair of blowout fracture of the orbital floor by using the transantral approach. South Med J. 1972;65:1229–43.

    Article  CAS  PubMed  Google Scholar 

  50. Cheong EC, Chen CT, Chen YR. Endoscopic management of orbital floor fractures. Facial Plast Surg. 2009;25:8–16.

    Article  CAS  PubMed  Google Scholar 

  51. Ducic Y, Verret DJ. Endoscopic transantral repair of orbital floor fractures. Otolaryngol Head Neck Surg. 2009;140:849–54.

    Article  PubMed  Google Scholar 

  52. Maturo SC, Wiseman J, Mair E. Transantral endoscopic repair of orbital floor fractures with the use of a flexible endoscope holder: a cadaver study. Ear Nose Throat J. 2008;87:693–5.

    Article  PubMed  Google Scholar 

  53. Nishiike S, Nagai M, Nakagawa A, et al. Endoscopic transantral orbital floor repair with antral bone grafts. Arch Otolaryngol Head Neck Surg. 2005;131:911–5.

    Article  PubMed  Google Scholar 

  54. Persons BL, Wong GB. Transantral endoscopic orbital floor repair using resorbable plate. J Craniofac Surg. 2002;13:483–8. discussion 488-489

    Article  PubMed  Google Scholar 

  55. Wallace TD, Moore CC, Bromwich MA, Matic DB. Endoscopic repair of orbital floor fractures: computed tomographic analysis using a cadaveric model. J Otolaryngol. 2006;35:1–7.

    Article  PubMed  Google Scholar 

  56. Strong EB. Endoscopic repair of orbital blow-out fractures. Facial Plast Surg. 2004;20:223–30.

    Article  PubMed  Google Scholar 

  57. Strong EB, Kim KK, Diaz RC. Endoscopic approach to orbital blowout fracture repair. Otolaryngol Head Neck Surg. 2004;131:683–95.

    Article  PubMed  Google Scholar 

  58. Farwell DG, Strong EB. Endoscopic repair of orbital floor fractures. Facial Plast Surg Clin North Am. 2006;14:11–6.

    Article  PubMed  Google Scholar 

  59. Lieger O, Richards R, Liu M, Lloyd T. Computer-assisted design and manufacture of implants in the late reconstruction of extensive orbital fractures. Arch Facial Plast Surg. 2010;12:186–91.

    Article  PubMed  Google Scholar 

  60. Metzger MC, Schon R, Zizelmann C, Weyer N, Gutwald R, Schmelzeisen R. Semiautomatic procedure for individual preforming of titanium meshes for orbital fractures. Plast Reconstr Surg. 2007;119:969–76.

    Article  CAS  PubMed  Google Scholar 

  61. Metzger MC, Schon R, Schulze D, Carvalho C, Gutwald R, Schmelzeisen R. Individual preformed titanium meshes for orbital fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:442–7.

    Article  PubMed  Google Scholar 

  62. Han C, Dilxat D, Zhang X, Li H, Chen J, Liu L. Does intraoperative navigation improve the anatomical reduction of intracapsular condylar fractures? J Oral Maxillofac Surg. 2018;76:2583–91.

    Article  PubMed  Google Scholar 

  63. Yang ML, Zhang B, Zhou Q, Gao XB, Liu Q, Lu L. Minimally-invasive open reduction of intracapsular condylar fractures with preoperative simulation using computer-aided design. Br J Oral Maxillofac Surg. 2013;51:e29–33.

    Article  PubMed  Google Scholar 

  64. Gelesko S, Markiewicz MR, Bell RB. Responsible and prudent imaging in the diagnosis and management of facial fractures. Oral Maxillofac Surg Clin North Am. 2013;25:545–60.

    Article  PubMed  Google Scholar 

  65. Xia JJ, Gateno J, Teichgraeber JF. New clinical protocol to evaluate craniomaxillofacial deformity and plan surgical correction. J Oral Maxillofac Surg. 2009;67:2093–106.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bobek S, Farrell B, Choi C, Farrell B, Weimer K, Tucker M. Virtual surgical planning for orthognathic surgery using digital data transfer and an intraoral fiducial marker: the charlotte method. J Oral Maxillofac Surg. 2015;73:1143–58.

    Article  PubMed  Google Scholar 

  67. Gelesko S, Markiewicz MR, Weimer K, Bell RB. Computer-aided orthognathic surgery. Atlas Oral Maxillofac Surg Clin North Am. 2012;20:107–18.

    Article  PubMed  Google Scholar 

  68. Levine JP, Patel A, Saadeh PB, Hirsch DL. Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art. J Craniofac Surg. 2012;23:288–93.

    Article  PubMed  Google Scholar 

  69. Hsu SS, Gateno J, Bell RB, et al. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg. 2013;71:128–42.

    Article  PubMed  Google Scholar 

  70. Gateno J, Xia JJ, Teichgraeber JF, et al. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg. 2007;65:728–34.

    Article  PubMed  Google Scholar 

  71. Xia JJ, Shevchenko L, Gateno J, et al. Outcome study of computer-aided surgical simulation in the treatment of patients with craniomaxillofacial deformities. J Oral Maxillofac Surg. 2011;69:2014–24.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gateno J, Xia J, Teichgraeber JF, Rosen A, Hultgren B, Vadnais T. The precision of computer-generated surgical splints. J Oral Maxillofac Surg. 2003;61:814–7.

    Article  PubMed  Google Scholar 

  73. Farrell BB, Franco PB, Tucker MR. Virtual surgical planning in orthognathic surgery. Oral Maxillofac Surg Clin North Am. 2014;26:459–73.

    Article  PubMed  Google Scholar 

  74. Hirsch DL, Garfein ES, Christensen AM, Weimer KA, Saddeh PB, Levine JP. Use of computer-aided design and computer-aided manufacturing to produce orthognathically ideal surgical outcomes: a paradigm shift in head and neck reconstruction. J Oral Maxillofac Surg. 2009;67:2115–22.

    Article  PubMed  Google Scholar 

  75. Xia JJ, Gateno J, Teichgraeber JF. Three-dimensional computer-aided surgical simulation for maxillofacial surgery. Atlas Oral Maxillofac Surg Clin North Am. 2005;13:25–39.

    Article  PubMed  Google Scholar 

  76. Serag M, Nassar TA, Avondoglio D, Weiner S. A comparative study of the accuracy of dies made from digital intraoral scanning vs. elastic impressions: an in vitro study. J Prosthodont. 2018;27:88–93.

    Article  PubMed  Google Scholar 

  77. Aragon ML, Pontes LF, Bichara LM, Flores-Mir C, Normando D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod. 2016;38:429–34.

    Article  PubMed  Google Scholar 

  78. Nilsson J, Richards RG, Thor A, Kamer L. Virtual bite registration using intraoral digital scanning, CT and CBCT: in vitro evaluation of a new method and its implication for orthognathic surgery. J Craniomaxillofac Surg. 2016;44:1194–200.

    Article  PubMed  Google Scholar 

  79. Shuper A, Merlob P, Grunebaum M, Reisner SH. The incidence of isolated craniosynostosis in the newborn infant. Am J Dis Child. 1985;139:85–6.

    CAS  PubMed  Google Scholar 

  80. Beeram MR, Abedin M, Shoroye A, Jayam-Trouth A, Young M, Reid Y. Occurrence of craniosynostosis in neonates exposed to cocaine and tobacco in utero. J Natl Med Assoc. 1993;85:865–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Alderman BW, Lammer EJ, Joshua SC, et al. An epidemiologic study of craniosynostosis: risk indicators for the occurrence of craniosynostosis in Colorado. Am J Epidemiol. 1988;128:431–8.

    Article  CAS  PubMed  Google Scholar 

  82. French LR, Jackson IT, Melton LJ 3rd. A population-based study of craniosynostosis. J Clin Epidemiol. 1990;43:69–73.

    Article  CAS  PubMed  Google Scholar 

  83. Lannelongue M. De la craniectomie dans la microcephalie. Compte Rendu Acad Sci 110:1890.

    Google Scholar 

  84. Lane LC. Pioneer craniectomy for relief of mental imbecility due to premature sutural closure and microccphalus. JAMA. 1892;18:49.

    Article  Google Scholar 

  85. Tessier P. Osteotomies totales de la face: Syndrome de Crouzon, syndrome d'Apert: Oxcephalies, scaphocephalies, turricephalies. Ann Chir Plast. 1967;12:273.

    CAS  PubMed  Google Scholar 

  86. Tessier P. Dysostoses cranio-faciales (syndromes de Crouzon et d'Apert). Osteotomies totales de la face. In: Transactions of the Fourth International Congress on Plastic and Reconstructive Surgery. Amsterdam; 1969. p. 774.

    Google Scholar 

  87. Rougeric J, Derome P, Anquez L. Craniostenosis et dysmorphies craniofaciales, Principes d'un nouvelle technique de traitement et ses resultats. Neuro-Chirurgie. 1972;18:429.

    Google Scholar 

  88. Machado HR, Hoffman HJ. Long-term results after lateral canthal advancement for unilateral coronal synostosis. J Neurosurg. 1992;76:401–6; discussion 406–407.

    Article  CAS  PubMed  Google Scholar 

  89. Mohr G, Hoffman HJ, Munro IR, Hendrick EB, Humphreys RP. Surgical management of unilateral and bilateral coronal craniosynostosis: 21 years of experience. Neurosurgery. 1978;2:83–92.

    Article  CAS  PubMed  Google Scholar 

  90. Hoffman HJ, Mohr G. Lateral canthal advancement of the supraorbital margin. A new corrective technique in the treatment of coronal synostosis. J Neurosurg. 1976;45:376–81.

    Article  CAS  PubMed  Google Scholar 

  91. Whitaker LA, Schut L, Kerr LP. Early surgery for isolated craniofacial dysostosis. Improvement and possible prevention of increasing deformity. Plast Reconstr Surg. 1977;60:575–81.

    Article  CAS  PubMed  Google Scholar 

  92. McCarthy JG, Coccaro PJ, Eptstein F, Converse JM. Early skeletal release in the infant with craniofacial dysostosis: the role of the sphenozygomatic suture. Plast Reconstr Surg. 1978;62:335–46.

    Article  CAS  PubMed  Google Scholar 

  93. Marchac D. Radical forehead remodeling for craniostenosis. Plast Reconstr Surg. 1978;61:823–35.

    Article  CAS  PubMed  Google Scholar 

  94. Mardini S, Alsubaie S, Cayci C, Chim H, Wetjen N. Three-dimensional preoperative virtual planning and template use for surgical correction of craniosynostosis. J Plast Reconstr Aesthet Surg. 2014;67:336–43.

    Article  PubMed  Google Scholar 

  95. Khechoyan DY, Saber NR, Burge J, et al. Surgical outcomes in craniosynostosis reconstruction: the use of prefabricated templates in cranial vault remodelling. J Plast Reconstr Aesthet Surg. 2014;67:9–16.

    Article  PubMed  Google Scholar 

  96. Chim H, Wetjen N, Mardini S. Virtual surgical planning in craniofacial surgery. Semin Plast Surg. 2014;28:150–8.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Seruya M, Borsuk DE, Khalifian S, Carson BS, Dalesio NM, Dorafshar AH. Computer-aided design and manufacturing in craniosynostosis surgery. J Craniofac Surg. 2013;24:1100–5.

    Article  PubMed  Google Scholar 

  98. Burge J, Saber NR, Looi T, et al. Application of CAD/CAM prefabricated age-matched templates in cranio-orbital remodeling in craniosynostosis. J Craniofac Surg. 2011;22:1810–3.

    Article  PubMed  Google Scholar 

  99. Sahoo N, Roy ID, Desai AP, Gupta V. Comparative evaluation of autogenous calvarial bone graft and alloplastic materials for secondary reconstruction of cranial defects. J Craniofac Surg. 2010;21:79–82.

    Article  PubMed  Google Scholar 

  100. Ducic Y. Titanium mesh and hydroxyapatite cement cranioplasty: a report of 20 cases. J Oral Maxillofac Surg. 2002;60:272–6.

    Article  PubMed  Google Scholar 

  101. Lethaus B, Poort Ter Laak M, Laeven P, et al. A treatment algorithm for patients with large skull bone defects and first results. J Craniomaxillofac Surg. 2010;

    Google Scholar 

  102. Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD. Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg. 2004;100:163–8.

    PubMed  Google Scholar 

  103. Chim H, Schantz JT. New frontiers in calvarial reconstruction: integrating computer-assisted design and tissue engineering in cranioplasty. Plast Reconstr Surg. 2005;116:1726–41.

    Article  CAS  PubMed  Google Scholar 

  104. Solaro P, Pierangeli E, Pizzoni C, Boffi P, Scalese G. From computerized tomography data processing to rapid manufacturing of custom-made prostheses for cranioplasty. Case report. J Neurosurg Sci. 2008;52:113–6. discussion 116

    CAS  PubMed  Google Scholar 

  105. Wang X, Lin Y, Yu H, et al. Image-guided navigation in optimizing surgical management of craniomaxillofacial fibrous dysplasia. J Craniofac Surg. 2011;22:1552–6.

    Article  PubMed  Google Scholar 

  106. Batra PS, Kanowitz SJ, Citardi MJ. Clinical utility of intraoperative volume computed tomography scanner for endoscopic sinonasal and skull base procedures. Am J Rhinol. 2008;22:511–5.

    Article  PubMed  Google Scholar 

  107. Schramm A, Gellrich NC, Gutwald R, et al. Indications for computer-assisted treatment of cranio-maxillofacial tumors. Comput Aided Surg. 2000;5:343–52.

    Article  CAS  PubMed  Google Scholar 

  108. Schramm A, Suarez-Cunqueiro MM, Barth EL, et al. Computer-assisted navigation in craniomaxillofacial tumors. J Craniofac Surg. 2008;19:1067–74.

    Article  PubMed  Google Scholar 

  109. To EW, Yuen EH, Tsang WM, et al. The use of stereotactic navigation guidance in minimally invasive transnasal nasopharyngectomy: a comparison with the conventional open transfacial approach. Br J Radiol. 2002;75:345–50.

    Article  PubMed  Google Scholar 

  110. Schmelzeisen R, Gellrich NC, Schramm A, Schon R, Otten JE. Navigation-guided resection of temporomandibular joint ankylosis promotes safety in skull base surgery. J Oral Maxillofac Surg. 2002;60:1275–83.

    Article  PubMed  Google Scholar 

  111. Lubbers HT, Jacobsen C, Konu D, Matthews F, Gratz KW, Obwegeser JA. Surgical navigation in cranio-maxillofacial surgery: an evaluation on a child with a cranio-facio-orbital tumour. Br J Oral Maxillofac Surg. 2010;

    Google Scholar 

  112. Hidalgo DA. Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg. 1989;84:71–9.

    Article  CAS  PubMed  Google Scholar 

  113. Wei FC, Santamaria E, Chang YM, Chen HC. Mandibular reconstruction with fibular osteoseptocutaneous free flap and simultaneous placement of osseointegrated dental implants. J Craniofac Surg. 1997;8:512–21.

    Article  CAS  PubMed  Google Scholar 

  114. Odin G, Balaguer T, Savoldelli C, Scortecci G. Immediate functional loading of an implant-supported fixed prosthesis at the time of ablative surgery and mandibular reconstruction for squamous cell carcinoma. J Oral Implantol. 2010;36:225–30.

    Article  PubMed  Google Scholar 

  115. Papadopulos NA, Schaff J, Sader R, et al. Mandibular reconstruction with free osteofasciocutaneous fibula flap: a 10 years experience. Injury. 2008;39 Suppl 3:S75–82.

    Article  PubMed  Google Scholar 

  116. Hundepool AC, Dumans AG, Hofer SO, et al. Rehabilitation after mandibular reconstruction with fibula free-flap: clinical outcome and quality of life assessment. Int J Oral Maxillofac Surg. 2008;37:1009–13.

    Article  CAS  PubMed  Google Scholar 

  117. Garrett N, Roumanas ED, Blackwell KE, et al. Efficacy of conventional and implant-supported mandibular resection prostheses: study overview and treatment outcomes. J Prosthet Dent. 2006;96:13–24.

    Article  PubMed  Google Scholar 

  118. Chiapasco M, Biglioli F, Autelitano L, Romeo E, Brusati R. Clinical outcome of dental implants placed in fibula-free flaps used for the reconstruction of maxillo-mandibular defects following ablation for tumors or osteoradionecrosis. Clin Oral Implants Res. 2006;17:220–8.

    Article  PubMed  Google Scholar 

  119. Sclaroff A, Haughey B, Gay WD, Paniello R. Immediate mandibular reconstruction and placement of dental implants. At the time of ablative surgery. Oral Surg Oral Med Oral Pathol. 1994;78:711–7.

    Article  CAS  PubMed  Google Scholar 

  120. Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg. 2009;38:187–92.

    Article  CAS  PubMed  Google Scholar 

  121. Liu HH, Li LJ, Shi B, Xu CW, Luo E. Robotic surgical systems in maxillofacial surgery: a review. Int J Oral Sci. 2017;9:63–73.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Steiner W. Results of curative laser microsurgery of laryngeal carcinomas. Am J Otolaryngol. 1993;14:116–21.

    Article  CAS  PubMed  Google Scholar 

  123. Harris AT, Tanyi A, Hart RD, et al. Transoral laser surgery for laryngeal carcinoma: has Steiner achieved a genuine paradigm shift in oncological surgery? Ann R Coll Surg Engl. 2018;100:2–5.

    Article  CAS  PubMed  Google Scholar 

  124. Haus BM, Kambham N, Le D, Moll FM, Gourin C, Terris DJ. Surgical robotic applications in otolaryngology. Laryngoscope. 2003;113:1139–44.

    Article  PubMed  Google Scholar 

  125. Weinstein GS, O'Malley BW Jr, Magnuson JS, et al. Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope. 2012;122:1701–7.

    Article  PubMed  Google Scholar 

  126. Hockstein NG, O'Malley BW Jr, Weinstein GS. Assessment of intraoperative safety in transoral robotic surgery. Laryngoscope. 2006;116:165–8.

    Article  PubMed  Google Scholar 

  127. O'Malley BW Jr, Weinstein GS, Snyder W, Hockstein NG. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope. 2006;116:1465–72.

    Article  PubMed  Google Scholar 

  128. Weinstein GS, O'Malley BW Jr, Desai SC, Quon H. Transoral robotic surgery: does the ends justify the means? Curr Opin Otolaryngol Head Neck Surg. 2009;17:126–31.

    Article  PubMed  Google Scholar 

  129. de Almeida JR, Genden EM. Robotic assisted reconstruction of the oropharynx. Curr Opin Otolaryngol Head Neck Surg. 2012;20:237–45.

    Article  PubMed  Google Scholar 

  130. Al Omran Y, Abdall-Razak A, Ghassemi N, Alomran S, Yang D, Ghanem AM. Robotics in cleft surgery: origins, current status and future directions. Robot Surg. 2019;6:41–6.

    PubMed  PubMed Central  Google Scholar 

  131. Ghali GE, Meram AT. Transoral robotic surgery for the tongue base. Atlas Oral Maxillofac Surg Clin North Am. 2019;27:59–66.

    Article  PubMed  Google Scholar 

  132. Chaturvedi AK, Anderson WF, Lortet-Tieulent J, et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol. 2013;31:4550–9.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rahman QB, Iocca O, Kufta K, Shanti RM. Global burden of head and neck cancer. Oral Maxillofac Surg Clin North Am. 2020;32:367–75.

    Article  PubMed  Google Scholar 

  134. Grewal AS, Rajasekaran K, Cannady SB, et al. Pharyngeal-sparing radiation for head and neck carcinoma of unknown primary following TORS assisted work-up. Laryngoscope. 2020;130:691–7.

    Article  PubMed  Google Scholar 

  135. Sethia R, Yumusakhuylu AC, Ozbay I, et al. Quality of life outcomes of transoral robotic surgery with or without adjuvant therapy for oropharyngeal cancer. Laryngoscope. 2018;128:403–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Markiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markiewicz, M.R., Farrell, B., Shanti, R.M. (2022). Technology in Oral and Maxillofacial Reconstruction. In: Miloro, M., Ghali, G.E., Larsen, P.E., Waite, P. (eds) Peterson’s Principles of Oral and Maxillofacial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-91920-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91920-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91919-1

  • Online ISBN: 978-3-030-91920-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics