Skip to main content

Machine Learning-Based Enterprise Modeling Assistance: Approach and Potentials

  • Conference paper
  • First Online:
The Practice of Enterprise Modeling (PoEM 2021)

Abstract

Today, enterprise modeling is still a highly manual task that requires substantial human effort. Human modelers are not only assigned the creative component of the process, but they also need to perform routine work related to comparing the being developed model with the existing ones. Although the huge amount of information available today (big data) makes it possible to analyze more best practices, it also introduces difficulties since a person is often not able to analyze all of it. In this work, we analyze the potential of using machine learning methods for assistance during enterprise modeling. An illustrative case study proves the feasibility and potentials of the proposed approach, which can potentially significantly affect the modern modeling methods, and also has long-term prospects for the creation of new technologies, products, and services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riss, U.V., Maus, H., Javaid, S., Jilek, C.: Digital twins of an organization for enterprise modeling. In: PoEM 2020: The Practice of Enterprise Modeling. Lecture Notes in Business Information Processing. Springer, pp. 25–40 (2020)

    Google Scholar 

  2. Fayoumi, A.: Toward an Adaptive Enterprise Modelling Platform. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 362–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_23

    Chapter  Google Scholar 

  3. Awadid, A., Bork, D., Karagiannis, D., Nurcan, S.: Toward generic consistency patterns in multi-view enterprise modelling. In: ECIS 2018 Proceedings. AIS eLibrary, p. 146 (2018)

    Google Scholar 

  4. Snoeck, M., Stirna, J., Weigand, H., Proper, H.A.: Panel discussion: artificial intelligence meets enterprise modelling. In: The 12th IFIP Working Conference on The Practice of Enterprise Modeling, PoEM 2019. CEUR (2019)

    Google Scholar 

  5. van Gils, B., Proper, H.A.: Enterprise Modelling in the Age of Digital Transformation. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 257–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_16

    Chapter  Google Scholar 

  6. Khider, H., Hammoudi, S., Meziane, A.: Business process model recommendation as a transformation process in MDE: conceptualization and first experiments. In: Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development. SciTePress, pp. 65–75 (2020)

    Google Scholar 

  7. Rasmussen, J.B., Hvam, L., Kristjansdottir, K., Mortensen, N.H.: Guidelines for structuring object-oriented product configuration models in standard configuration software. J. Univ. Comput. Sci. 26, 374–401 (2020)

    Google Scholar 

  8. Smirnov, A., Shchekotov, M., Shilov, N., Ponomarev, A.: Decision support service based on dynamic resource network configuration in human-computer cloud. In: 2018 23rd Conference of Open Innovations Association (FRUCT). IEEE, pp. 362–368 (2018)

    Google Scholar 

  9. Pereira, J.A., Schulze, S., Krieter, S., et al.: A context-aware recommender system for extended software product line configurations. In: Proceedings of the 12th International Workshop on Variability Modelling of Software-Intensive Systems. ACM, New York, NY, USA, pp. 97–104 (2018)

    Google Scholar 

  10. Hildebrandt, M., Sunder, S.S., Mogoreanu, S., Thon, I., Tresp, V., Runkler, T.: Configuration of industrial automation solutions using multi-relational recommender systems. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 271–287. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_17

    Chapter  Google Scholar 

  11. Tarasov, V., Seigerroth, U., Sandkuhl, K.: Ontology development strategies in industrial contexts. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 339, pp. 156–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04849-5_14

    Chapter  Google Scholar 

  12. Elkindy, A.I.A.: Survey of Business Process Modeling Recommender Systems. University of Koblenz - Landau (2019)

    Google Scholar 

  13. Vernadat, F.: Enterprise modelling: research review and outlook. Comput. Ind. 122, 103265 (2020). https://doi.org/10.1016/j.compind.2020.103265

  14. Wang, J., Gui, S., Cao, B.: A process recommendation method using bag-of-fragments. Int. J. Intell. Internet Things Comput. 1, 32 (2019). https://doi.org/10.1504/IJIITC.2019.104734

    Article  Google Scholar 

  15. Melville, P., Sindhwani, V.: Recommender systems. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer US, Boston, MA, pp. 829–838 (2011)https://doi.org/10.1007/978-1-4471-5604-8_4

  16. Fellmann, M., Metzger, D., Jannaber, S., et al.: Process modeling recommender systems - a generic data model and its application to a smart glasses-based modeling environment. Bus. Inf. Syst. Eng. 60, 21–38 (2018)

    Article  Google Scholar 

  17. Koschmider, A., Hornung, T., Oberweis, A.: Recommendation-based editor for business process modeling. Data Knowl. Eng. 70, 483–503 (2011). https://doi.org/10.1016/j.datak.2011.02.002

    Article  Google Scholar 

  18. Kuschke, T., Mäder, P.: Pattern-based auto-completion of UML modeling activities. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering. ACM, New York, NY, USA, pp. 551–556 (2014)

    Google Scholar 

  19. Wieloch, K., Filipowska, A., Kaczmarek, M.: Autocompletion for business process modelling. In: Abramowicz, W., Maciaszek, L., Węcel, K. (eds.) BIS 2011. LNBIP, vol. 97, pp. 30–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25370-6_4

    Chapter  Google Scholar 

  20. Born, M., Brelage, C., Markovic, I., Pfeiffer, D., Weber, I.: Auto-completion for executable business process models. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 510–515. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-8_51

    Chapter  Google Scholar 

  21. Mazanek, S., Minas, M.: Business process models as a showcase for syntax-based assistance in diagram editors. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 322–336. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0_24

    Chapter  Google Scholar 

  22. Clever, N., Holler, J., Shitkova, M., Becker, J.: Towards auto-suggested process modeling – prototypical development of an auto-suggest component for process modeling tools. In: Enterprise Modelling and Information Systems Architectures (EMISA 2013). Gesellschaft für Informatik e.V., pp. 133–145 (2013)

    Google Scholar 

  23. Fellmann, M., Zarvić, N., Thomas, O.: Business processes modelling assistance by recommender functionalities: a first evaluation from potential users. In: Johansson, B., Møller, C., Chaudhuri, A., Sudzina, F. (eds.) BIR 2017. LNBIP, vol. 295, pp. 79–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64930-6_6

    Chapter  Google Scholar 

  24. Li, Y., Cao, B., Xu, L., et al.: An efficient recommendation method for improving business process modeling. IEEE Trans. Industr. Inf. 10, 502–513 (2014). https://doi.org/10.1109/TII.2013.2258677

    Article  Google Scholar 

  25. Nair, A., Ning, X., Hill, J.H.: Using recommender systems to improve proactive modeling. Softw. Syst. Model. 20(4), 1159–1181 (2021). https://doi.org/10.1007/s10270-020-00841-2

    Article  Google Scholar 

  26. Kögel, S.: Recommender system for model driven software development. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, New York, NY, USA, pp. 1026–1029 (2017)

    Google Scholar 

  27. Jangda, A., Polisetty, S., Guha, A., Serafini, M.: Accelerating graph sampling for graph machine learning using GPUs. In: Proceedings of the Sixteenth European Conference on Computer Systems. ACM, New York, NY, USA, pp. 311–326 (2021)

    Google Scholar 

  28. Valera, M., et al.: Machine learning for graph-based representations of three-dimensional discrete fracture networks. Comput. Geosci. 22(3), 695–710 (2018). https://doi.org/10.1007/s10596-018-9720-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, C., Ye, W., Zuo, Y., et al.: Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019). https://doi.org/10.1021/acs.chemmater.9b01294

    Article  Google Scholar 

  30. Na, G.S., Chang, H., Kim, H.W.: Machine-guided representation for accurate graph-based molecular machine learning. Phys. Chem. Chem. Phys. 22, 18526–18535 (2020). https://doi.org/10.1039/D0CP02709J

    Article  Google Scholar 

  31. Nielsen, R.F., Nazemzadeh, N., Sillesen, L.W., et al.: Hybrid machine learning assisted modelling framework for particle processes. Comput. Chem. Eng. 140, 106916 (2020). https://doi.org/10.1016/j.compchemeng.2020.106916

  32. Wu, Z., Pan, S., Chen, F., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2021). https://doi.org/10.1109/TNNLS.2020.2978386

    Article  MathSciNet  Google Scholar 

  33. Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link prediction. Symmetry 13, 485 (2021). https://doi.org/10.3390/sym13030485

    Article  Google Scholar 

  34. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed Representations of Words and Phrases and their Compositionality (2013)

    Google Scholar 

  35. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational dat. Adv. Neural Inf. Process. Syst. (NIPS 2013) 26 (2013)

    Google Scholar 

  36. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI 2014: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1112–1119 (2014)

    Google Scholar 

  37. Fan, M., Zhou, Q., Chang, E., Zheng, T.F.: Transition-based knowledge graph embedding with relational mapping properties. In: Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing. Department of Linguistics, Chulalongkorn University, pp. 328–337 (2014)

    Google Scholar 

  38. Lin, Y., Liu1, Z., Sun, M., et al.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2181–2187 (2015)

    Google Scholar 

  39. Yang, B., Yih, W., He, X., et al.: Embedding Entities and Relations for Learning and Inference in Knowledge Bases (2014)

    Google Scholar 

  40. Trouillon, T., Welbl, J., Riedel, S., et al.: Complex Embeddings for Simple Link Prediction (2016)

    Google Scholar 

  41. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D Knowledge Graph Embeddings (2017)

    Google Scholar 

  42. Balažević, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embeddings. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11731, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5_52

    Chapter  Google Scholar 

  43. Jagvaral, B., Lee, W.-K., Roh, J.-S., et al.: Path-based reasoning approach for knowledge graph completion using CNN-BiLSTM with attention mechanism. Expert Syst. Appl. 142, 112960 (2020). https://doi.org/10.1016/j.eswa.2019.112960

  44. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based Multi-Relational Graph Convolutional Networks (2019)

    Google Scholar 

  45. Sonntag, A., Hake, P., Fettke, P., Loos, P.: An approach for semantic business process model matching using supervised machine learning. In: European Conference on Information Systems (ECIS) (2016)

    Google Scholar 

  46. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive Representation Learning on Large Graphs (2017)

    Google Scholar 

  47. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013) (2013)

    Google Scholar 

Download references

Acknowledgements

The paper is due to State Research no. 0073–2019-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Shilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shilov, N., Othman, W., Fellmann, M., Sandkuhl, K. (2021). Machine Learning-Based Enterprise Modeling Assistance: Approach and Potentials. In: Serral, E., Stirna, J., Ralyté, J., Grabis, J. (eds) The Practice of Enterprise Modeling. PoEM 2021. Lecture Notes in Business Information Processing, vol 432. Springer, Cham. https://doi.org/10.1007/978-3-030-91279-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91279-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91278-9

  • Online ISBN: 978-3-030-91279-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics