Skip to main content

Software-Defined Networking-Based Ad hoc Networks Routing Protocols

  • Chapter
  • First Online:
Software Defined Networking for Ad Hoc Networks

Abstract

A modern networking structure that employs software-based controllers to control and interact with primary hardware devices for directing the traffic on a network is called software-defined networking (SDN). It differs from the conventional network by creating a centralized control over the routing of data packets. Networks are widely used networks in which spontaneous network connectivity among the nodes is needed for communicating useful information quickly to the target audience. Nodes in ad hoc networks (AHN) down to function in an infrastructure-less environment can form a group among themselves freely and launch wireless multi-hop communication without any centralized access point. Every node can have direct communication among each other and be involved in relying on the data packet. Routing in AHN is difficult and has specific constraints over wireless transmission such as frequently changing topology, self-organizing nature, wireless link fluctuation, and resource constraint nature of nodes. Imposing SDN technology in designing routing protocols for various application needs of upcoming scenarios of AHN is crucial for improved network management and reducing the overall communication cost. SDN-based routing protocols shift the routing choices from basic network elements to the controller. This technique helps to identify the shortest route with minimum latency and to reduce the control packet exchange rapidly. This article first proposes the various network structures that rely on SDN technology for competent message transmission in mobile AHN and then presents a survey on SDN-based network routing protocols from different branches of AHN with the methodology used and advantages and disadvantages of each. This helps the researchers to enhance them further to meet the requirement of various application scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Helen, D. Arivazhagan, Applications, advantages, and challenges of ad-hoc networks. J. Acad. Ind Res. (JAIR) 2(8), 453–457 (2014)

    Google Scholar 

  2. N. Raza, M.U. Aftab, M.Q. Akbar, O. Ashraf, M. Irfan, Mobile networks applications and their challenges. Commun. Netw. 8(3), 131–136 (2016)

    Article  Google Scholar 

  3. M.A. Pandey, Introduction to mobile ad hoc network. Int. J. Sci. Res. Publ. 5(5), 1–6 (2015)

    Google Scholar 

  4. M. Chitkara, M.W. Ahmad, Review on manet: Characteristics, challenges, imperatives, and routing protocols. Int. J. Comput. Sci. Mob. Comput. 3(2), 432–437 (2014)

    Google Scholar 

  5. G. Kirubasri, U. Maheswari, R. Venkatesh, A survey on hierarchical cluster-based routing protocols for wireless multimedia sensor networks. J. Converg. Inf. Technol. 9(6), 19 (2014)

    Google Scholar 

  6. S. Sennan, R. Somula, A.K. Luhach, G.G. Deverajan, W. Alnumay, N.Z. Jhanjhi, et al., Energy efficient optimal parent selection based routing protocol for Internet of Things using firefly optimization algorithm. Transac. Emerg. Telecommun. Technol. 32, e4171 (2020)

    Google Scholar 

  7. H. Zemrane, Y. Baddi, A. Hasbi, Mobile ad hoc networks for intelligent transportation system: Comparative analysis of the routing protocols. Proc. Comp. Sci. 160, 758–765 (2019)

    Article  Google Scholar 

  8. V.K. Mishra, A. Dusia, A. Sethi, Routing in Software-Defined Mobile Ad Hoc Networks (Sd-Manet). (US Army Research Laboratory Aberdeen Proving Ground United States, 2018)

    Google Scholar 

  9. S. Sennan, S. Ramasubbareddy, S. Balasubramaniyam, A. Nayyar, M. Abouhawwash, N.A. Hikal, T2FL-PSO: Type-2 fuzzy logic-based particle swarm optimization algorithm used to maximize the lifetime of internet of things. IEEE Access 9, 63966–63979 (2021)

    Article  Google Scholar 

  10. G. Kirubasri, N.U. Maheswari, A study on hardware and software link quality metrics for wireless multimedia sensor networks. Int. J. Adva. Net. Appl. 8(3), 3103 (2016)

    Google Scholar 

  11. S. Sennan, S. Balasubramaniyam, A.K. Luhach, S. Ramasubbareddy, N. Chilamkurti, Y. Nam, Energy and delay aware data aggregation in routing protocol for internet of things. Sensors 19(24), 5486 (2019)

    Article  Google Scholar 

  12. A.R. Rajeswari, in Recent Trends in Communication Networks, A Mobile Ad Hoc Network Routing Protocols: A Comparative Study (IntechOpen, 2020)

    Google Scholar 

  13. G. Kirubasri, A contemporary survey on clustering techniques for wireless sensor networks. Turk. J. Comp. Mathe. Educ. (TURCOMAT) 12(11), 5917–5927 (2021)

    Google Scholar 

  14. S. Sankar, P. Srinivasan, A.K. Luhach, R. Somula, N. Chilamkurti, Energy-aware grid-based data aggregation scheme in routing protocol for agricultural internet of things. Sustain. Comput. Inform. Syst. 28, 100422 (2020)

    Google Scholar 

  15. G. Kirubasri, N.U. Maheswari, R. Venkatesh, Novel energy efficient predictive link quality based reliable routing for wireless multimedia bio-sensor networks in bio-medical invention research and bionic utilities monitoring application. Int. J. Biomed. Eng. Technol. 26(3–4), 219–236 (2018)

    Article  Google Scholar 

  16. S. Rani, S.H. Ahmed, Multi-Hop Routing in Wireless Sensor Networks: An Overview, Taxonomy, and Research Challenges (2015)

    Google Scholar 

  17. A.S. Navaz, D.G.K. Nawaz, Layer orient time domain density estimation technique based channel assignment in tree structure wireless sensor networks for fast data collection. Int. J. Eng. Technol. 8(3), 1506–1512 (2016)

    Google Scholar 

  18. S. Samanta, S.S. Singhar, A.H. Gandomi, S. Ramasubbareddy, S. Sankar, A WiVi based IoT framework for detection of human trafficking victims kept in hideouts, n International Conference on Internet of Things (pp. 96–107). (Springer, Cham, 2020)

    Google Scholar 

  19. T.K. Saini, S.C. Sharma, Prominent unicast routing protocols for mobile ad hoc networks: criterion, classification, and key attributes. Ad Hoc Netw. 89, 58–77 (2019)

    Article  Google Scholar 

  20. G. Kirubasri, A machine learning model for improved prediction of Alzheimer’s progression. Int. J. Adv. Sci. Technol. 29(6), 4204–4215 (2020)

    Google Scholar 

  21. A.R. Ragab, A new classification for network. iJIM 14(14), 215 (2020)

    Google Scholar 

  22. A. Boukerche, B. Turgut, N. Aydin, M.Z. Ahmad, L. Bölöni, D. Turgut, Routing protocols in ad hoc networks: a survey. Comput. Netw. 55(13), 3032–3080 (2011)

    Article  Google Scholar 

  23. S. Sankar, P. Srinivasan, Fuzzy sets based cluster routing protocol for internet of things. Int. J. Fuz. Syst. Appl. IJFSA 8(3), 70–93 (2019)

    Google Scholar 

  24. S. Sankar, P. Srinivasan, Enhancing the mobility support in internet of things. Int. J. Fuz. Syst. Appl. IJFSA 9(4), 1–20 (2020)

    Google Scholar 

  25. M.G. Kirubasri, N. UmaMaheswari, R. Venkatesh, A robust intra-cluster communication for wireless multimedia sensor networks using link quality analysis. Int. J. Pure Appl. Math. 117(8), 149–154 (2017)

    Google Scholar 

  26. P. Misra, Routing protocols for ad hoc mobile wireless networks. Courses Notes (1999). Available at http://www.cis.ohio-state.edu/~jain/cis788-99/adhoc_routing/index.html

  27. W. Xia, Y. Wen, C.H. Foh, D. Niyato, H. Xie, A survey on software-defined networking. IEEE Commun. Surv. Tutor. 17(1), 27–51 (2014)

    Article  Google Scholar 

  28. B. Mishra, D. Jena, R. Somula, S. Sankar, Secure key storage and access delegation through cloud storage. Int. J. Knowl. Syst. Sci. (IJKSS) 11(4), 45–64 (2020)

    Article  Google Scholar 

  29. Z.J. Han, W. Ren, A novel wireless sensor networks structure based on the SDN. Int. J. Distribut. Sensor Netw. 10(3), 874047 (2014)

    Article  Google Scholar 

  30. L.F. da Silva Santos, F.F. de Mendonça Júnior, K.L. Dias, μSDN: an SDN-based routing architecture for wireless sensor networks, in 2017 VII Brazilian Symposium on Computing Systems Engineering (SBESC), (IEEE, 2017, November), pp. 63–70

    Chapter  Google Scholar 

  31. M. Hadley, D. Nicol, R. Smith, Software-defined networking redefines performance for ethernet control systems, in Power and Energy Automation Conference, (2017, March)

    Google Scholar 

  32. D. Kreutz, F.M. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2014)

    Article  Google Scholar 

  33. S. Sankar, P. Srinivasan, Multi-layer cluster based energy aware routing protocol for internet of things. Cyber. Inform. Technol. 18(3), 75–92 (2018)

    Google Scholar 

  34. G. Kirubasri, Energy efficient routing using machine learning based link quality estimation for WMSNs. Turk. J. Comput. Math. Educ. (TURCOMAT) 12(11), 3767–3775 (2021)

    Google Scholar 

  35. M. Jammal, T. Singh, A. Shami, R. Asal, Y. Li, Software defined networking: state of the art and research challenges. Comput. Netw. 72, 74–98 (2014)

    Article  Google Scholar 

  36. C.Y. Hans, G. Quer, R.R. Rao, Wireless SDN mobile ad hoc network: from theory to practice, in 2017 IEEE International Conference on Communications (ICC), (IEEE, 2017, May), pp. 1–7

    Google Scholar 

  37. K. Poularakis, Q. Qin, K.M. Marcus, K.S. Chan, K.K. Leung, L. Tassiulas, Hybrid sdn control in mobile ad hoc networks, in 2019 IEEE International Conference on Smart Computing (SMARTCOMP), (IEEE, 2019, June), pp. 110–114

    Chapter  Google Scholar 

  38. S. Sankar, P. Srinivasan, Internet of things (iot): a survey on empowering technologies, research opportunities and applications. Int. J. Pharm. Technol. 8(4), 26117–26141 (2016)

    Google Scholar 

  39. K. Poularakis, G. Iosifidis, L. Tassiulas, SDN-enabled tactical ad hoc networks: extending programmable control to the edge. IEEE Commun. Mag. 56(7), 132–138 (2018)

    Article  Google Scholar 

  40. V.S. Shukla, SDN transport architecture and challenges, in Optical Fiber Communication Conference, (Optical Society of America, 2015, March), pp. W4J-1

    Google Scholar 

  41. S. Schaller, D. Hood, Software defined networking architecture standardization. Comput. Stand. Interf. 54, 197–202 (2017)

    Article  Google Scholar 

  42. S. Sankar, P. Srinivasan, S. Ramasubbareddy, B. Balamurugan, Energy-aware multipath routing protocol for internet of things using network coding techniques. Int. J. Grid Utility Comput. 11(6), 838–846 (2020)

    Article  Google Scholar 

  43. https://www.opennetworking.org/sdn.resources/sdn-definition

    Google Scholar 

  44. S. Kiruthika, G. Kirubasri, Sentiment analysis for product improvement in e-commerce sites – a simulation. Int. J. Adv. Sci. Technol. 29(06), 4245–4252 (2020)

    Google Scholar 

  45. https://www.datacenterknowledge.com/archives/2013/07/26/7-software-defined-networking-considerations/

  46. S. Sankar, P. Srinivasan, Energy and load aware routing protocol for internet of things. Int. J. Adv. Appl. Sci. (IJAAS) 7(3), 255–264 (2018)

    Google Scholar 

  47. M. Liyanage, A. Gurtov, Ylianttila, M. (Eds.)., Software Defined Mobile Networks (SDMN): Beyond LTE Network Architecture (Wiley, 2015)

    Google Scholar 

  48. E.M. Royer, C.-K. Toh, A review of current routing protocols for ad hoc mobile wireless networks by EM Royer, CK Toh in IEEE Personal communications, 1999. IEEE Pers. Commun. 6(2), 46–55 (1999)

    Article  Google Scholar 

  49. S. Kiruthika, G. Kirubasri, Improving the efficiency of a dual corpus text to speech synthesis system using a Prefetch buffer. Int. J. Adv. Sci. Technol. 29(06), 4253–4258 (2020)

    Google Scholar 

  50. T. Bakhshi, State of the art and recent research advances in software defined networking, in Wireless Communications and Mobile Computing, (2017)

    Google Scholar 

  51. S.K. Tayyaba, M.A. Shah, O.A. Khan, A.W. Ahmed, Software defined network (sdn) based internet of things (iot) a road ahead, in Proceedings of the International Conference on Future Networks and Distributed Systems, (2017, July), pp. 1–8

    Google Scholar 

  52. L. Nkenyereye, L. Nkenyereye, S.M. Islam, Y.H. Choi, M. Bilal, J.W. Jang, Software-defined network-based vehicular networks: a position paper on their modeling and implementation. Sensors 19(17), 3788 (2019)

    Article  Google Scholar 

  53. S. Sankar, R. Somula, R.L. Kumar, P. Srinivasan, M.A. Jayanthi, Trust-aware routing framework for internet of things. Int. J. Knowl. Syst. Sci. (IJKSS) 12(1), 48–59 (2021)

    Article  Google Scholar 

  54. S. Sankar, S. Ramasubbareddy, F. Chen, A.H. Gandomi, Energy-efficient cluster-based routing protocol in internet of things using swarm intelligence, in 2020 IEEE Symposium Series on Computational Intelligence (SSCI), (IEEE, 2020, December), pp. 219–224

    Chapter  Google Scholar 

  55. S. Sennan, S. Ramasubbareddy, A.K. Luhach, A. Nayyar, B. Qureshi, CT-RPL: cluster tree based routing protocol to maximize the lifetime of internet of things. Sensors 20(20), 5858 (2020)

    Article  Google Scholar 

  56. S. Sankar, P. Srinivasan, Internet of things based digital lock system. J. Comput. Theor. Nanosci. 15(9–10), 2758–2763 (2018)

    Article  Google Scholar 

  57. S. Sankar, P. Srinivasan, R. Saravanakumar, Internet of things based ambient assisted living for elderly people health monitoring. Res. J. Pharm. Technol. 11(9), 3900–3904 (2018)

    Article  Google Scholar 

  58. S. Sankar, P. Srinivasan, Composite metric based energy efficient routing protocol for internet of things. Int. J. Intell. Eng. Syst. 10(5), 278–286 (2017)

    Google Scholar 

  59. A. Hakiri, A. Gokhale, P. Berthou, D.C. Schmidt, T. Gayraud, Software-defined networking: challenges and research opportunities for future internet. Comput. Netw. 75, 453–471 (2014)

    Article  Google Scholar 

  60. S. Mirza, S.Z. Bakshi, Introduction to MANET. Int. Res. J. Eng. Technol. 5(1), 17–20 (2018)

    Google Scholar 

  61. Q. Liu, L. Cheng, R. Alves, T. Ozcelebi, F. Kuipers, G. Xu, et al., Cluster-based flow control in hybrid software-defined wireless sensor networks. Comput. Netw. 187, 107788 (2021)

    Article  Google Scholar 

  62. M. Rezaee, M.H.Y. Moghaddam, SDN-based quality of service networking for wide area measurement system. IEEE Transac. Indust. Inform. 16(5), 3018–3028 (2019)

    Article  Google Scholar 

  63. A.A. Abdelltif, E. Ahmed, A.T. Fong, A. Gani, M. Imran, SDN-based load balancing service for cloud servers. IEEE Commun. Mag. 56(8), 106–111 (2018)

    Article  Google Scholar 

  64. S.Y. Shahdad, A. Sabahath, R. Parveez, Architecture, issues and challenges of wireless mesh network, in 2016 International Conference on Communication and Signal Processing (ICCSP), (IEEE, 2016, April), pp. 0557–0560

    Chapter  Google Scholar 

  65. T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler, ... L. Viennot, Optimized link state routing protocol (OLSR), (2003)

    Google Scholar 

  66. D. Johnson, N.S. Ntlatlapa, C. Aichele, Simple Pragmatic Approach to Mesh Routing Using BATMAN, (2008)

    Google Scholar 

  67. I.T. Haque, N. Abu-Ghazaleh, Wireless software defined networking: A survey and taxonomy. IEEE Commun. Surv. Tutor. 18(4), 2713–2737 (2016)

    Article  Google Scholar 

  68. V. Nascimento, M. Moraes, R. Gomes, B. Pinheiro, A. Abelém, V.C. Borges, et al., Filling the gap between software defined networking and wireless mesh networks, in 10th International Conference on Network and Service Management (CNSM) and Workshop, (IEEE, 2014, November), pp. 451–454

    Chapter  Google Scholar 

  69. D.B. Rawat, S. Reddy, Recent advances on software defined wireless networking, in SoutheastCon 2016, (IEEE, 2016, March), pp. 1–8

    Google Scholar 

  70. H. Trivedi, S. Tanwar, P. Thakkar, Software defined network-based vehicular ad hoc networks for intelligent transportation system: recent advances and future challenges, in International Conference on Futuristic Trends in Network and Communication Technologies, (Springer, Singapore, 2018, February), pp. 325–337

    Google Scholar 

  71. A. Dusia, Software-Defined Architecture and Routing Solutions for Mobile Ad hoc Networks (Doctoral dissertation, University of Delaware, 2019)

    Google Scholar 

  72. D. Wei, Z. Liu, H. Cao, SRPA: SDN-based routing protocol for ad hoc networks, in 2018 9th International Conference on Information Technology in Medicine and Education (ITME), (IEEE, 2018, October), pp. 1012–1017

    Google Scholar 

  73. N. Noorani, S.A.H. Seno, Routing in VANETs based on intersection using SDN and fog computing, in 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), (IEEE, 2018, October), pp. 339–344

    Chapter  Google Scholar 

  74. H. Fu, Y.A. Liu, K.M. Liu, Y.Y. Fan, An SDN-based congestion-aware routing algorithm over wireless mesh networks, in Wireless Communication and Sensor Network: Proceedings of the International Conference on Wireless Communication and Sensor Network (WCSN 2015), (2016), pp. 111–119

    Chapter  Google Scholar 

  75. X. Ji, H. Yu, G. Fan, W. Fu, SDGR: an SDN-based geographic routing protocol for VANET, in 2016 IEEE International Conference on Internet Of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), (IEEE, 2016, December), pp. 276–281

    Chapter  Google Scholar 

  76. R.A. Nazib, S. Moh, A comparative study on routing protocols for vehicular ad hoc networks based on software defined networking

    Google Scholar 

  77. S. Sankar, P. Srinivasan, Mobility and energy aware routing protocol for healthcare IoT application. Res. J. Pharm. Technol. 11(7), 3139–3144 (2018)

    Article  Google Scholar 

  78. S. Correia, A. Boukerche, R.I. Meneguette, An architecture for hierarchical software-defined vehicular networks. IEEE Commun. Mag. 55(7), 80–86 (2017)

    Article  Google Scholar 

  79. G. Ravi, K.R. Kashwan, A new routing protocol for energy efficient mobile applications for ad hoc networks. Comput. Elect. Eng. 48, 77–85. https://doi.org/10.1016/j.compeleceng.2015.03.023,2015. (ECE), Cited – 29

  80. M. Usha, P. Kavitha, Anomaly based intrusion detection for 802.11 networks with optimal features using SVM classifier. Wireless Netw. 23(8), 2431–2466 (2017). https://doi.org/10.1007/s11276-016-1300-5. Cited – 16

    Article  Google Scholar 

  81. S. Sennan, S. Ramasubbareddy, S. Balasubramaniyam, A. Nayyar, C.A. Kerrache, M. Bilal, MADCR: mobility aware dynamic clustering-based routing protocol in internet of vehicles. China Commun. 18(7), 69–85

    Google Scholar 

  82. D.S. Nayagi, G.G. Sivasankari, V. Ravi, K.R. Venugobal, S. Sennan, REERS: reliable and energy efficient route selection algorithm for heterogeneous Internet of things applications. Int. J. Commun. Syst. 34(13), e4900 (2021)

    Article  Google Scholar 

  83. M.S. Kumar, S. Sankar, V.K. Nassa, D. Pandey, B.K. Pandey, W. Enbeyle, Innovation and creativity for data mining using computational statistics, in Methodologies and Applications of Computational Statistics for Machine Intelligence, (IGI Global, 2021), pp. 223–240

    Chapter  Google Scholar 

  84. T.K. Revathi, B. Sathiyabhama, S. Sankar, A deep learning based approach for diagnosing coronary inflammation with multi-scale coronary response dynamic balloon tracking (MSCAR-DBT) based artery segmentation in coronary computed tomography angiography (CCTA). Ann. Rom. Soc. Cell Biol. 25(6), 4936–4948 (2021)

    Google Scholar 

  85. T.K. Revathi, B. Sathiyabhama, S. Sankar, Diagnosing cardio vascular disease (CVD) using generative adversarial network (GAN) in retinal fundus images. Ann. Rom. Soc. Cell Biol., 2563–2572 (2021)

    Google Scholar 

  86. S. Sennan, S. Ramasubbareddy, A. Nayyar, Y. Nam, M. Abouhawwash, LOA-RPL: novel energy-efficient routing protocol for the internet of things using lion optimization algorithm to maximize network lifetime. Comput. Mat. Contin. 61(1) (2021)

    Google Scholar 

  87. M.S. Karthiprem, S. Selvarajan, M.S. Sankar, Recognizing the moving vehicle while driving on Indian roads. Int. J. Appl. Eng. Res. 10(20), 41471–41477 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirubasri, G., Sankar, S., Pandey, D., Pandey, B.K., Nassa, V.K., Dadheech, P. (2022). Software-Defined Networking-Based Ad hoc Networks Routing Protocols. In: Ghonge, M.M., Pramanik, S., Potgantwar, A.D. (eds) Software Defined Networking for Ad Hoc Networks. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-91149-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91149-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91148-5

  • Online ISBN: 978-3-030-91149-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics