Skip to main content

Genomic Designing Towards Biotic Stress Resistance in Mungbean and Urdbean

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Pulse Crops

Abstract

Mungbean (Vigna radiata) and urdbean (V. mungo) are considered two important crops amongst the Asiatic Vigna species, which are primarily farmed for food, fodder and manure, and have emerged as a suitable alternative to other grain legumes. Despite their agronomic relevance, these two species have a limited crop production, yielding just one-third to one-fourth of their full potential. The key factor behind low yield can be attributed to various biotic stresses (pathogenic infection and insect infestation) that occur at all phases of plant growth as well as post-harvest period. The major contributors in this regard are the Yellow mosaic virus, Macrophomina blight, powdery mildew, anthracnose, Cercospora leaf spot, bacterial leaf spot, root-knot nematodes, and post-harvest pests, such as bruchids. Development of new cultivars through conventional breeding could be an alternative, but the narrow genetic base of these two crops has hindered the progress. Additionally the time-consuming and labor-intensive nature of the traditional breeding techniques has aggravated the problem further. To accelerate the breeding process scientists have turned towards genomic tools, particularly QTL mapping and genomics-assisted breeding which provide potential ways for development of elite cultivar for biotic stress resistance. Despite sincere efforts, both mungbean and urdbean are slow runner in genomics research, although mungbean was one of the pioneer legumes targeted for genome analysis at the dawn of the plant genomics era. Completion of the mungbean genome sequence in 2014 and the recent de novo sequencing of the urdbean genome in 2020 has empowered the researchers to develop genomic resources and identification and mapping of potential gene(s) associated with biotic stress resistance. The present chapter therefore covers the various biotic constrains in the production of mungbean and urdbean and cumulates the previous, current and future endeavors on molecular and genetic improvements aiming at biotic stress tolerance in these two crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abad P, Favery B, Rosso MN, Castagnone-Sereno P (2003) Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4(4):217–224. https://doi.org/10.1046/j.1364-3703.2003.00170.x

    Article  CAS  PubMed  Google Scholar 

  • Abawi GS, Corrales P, Antonio M (1990) Root rots of beans in Latin America and Africa: diagnosis, research methodologies and management strategies, CIAT, Cali, Colombia

    Google Scholar 

  • Abbaiah K (1993) Development of powdery mildew epidemics in urd bean in relation to weather factors. Ind J Pulse Res 6:186–188

    Google Scholar 

  • Ahmad M, Harwood RF (1973) Studies on a whitefly-transmitted yellow mosaic of urd bean (Phaseolus mungo). Plant Dis Rep 57:800–802

    Google Scholar 

  • Ahmed S (2009) Effect of soil salinity on the yield and yield components of mungbean. Pak J Bot 41:263–268

    Google Scholar 

  • Alam AKMM, Somta P, Srinives P (2014) Identification and confirmation of quantitative trait loci controlling resistance to mungbean yellow mosaic disease in mungbean [Vigna radiata (L.) Wilczek]. Mol Breed 34:1497–1506. https://doi.org/10.1007/s11032-014-0133-0

    Article  CAS  Google Scholar 

  • Allen DJ, Lenne JM (1998) Diseases as constraints to production of legumes in agriculture. In: Allen DJ, Lenne JM (eds) Pathology of food and pasture legumes. CAB International, Wallingford, UK, pp 1–61

    Google Scholar 

  • Anjum T, Gupta KS, Datta S (2010) Mapping of mungbean yellow mosaic India virus (MYMIV) and powdery mildew resistant gene in black gram (Vigna mungo). Elec J Plant Breed 1(4):1148–1152

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218. https://doi.org/10.1007/BF02672069

    Article  CAS  Google Scholar 

  • Azeem F, Bilal MJ, Ijaz U, Zubair M, Rasul I, Asghar MJ, Abbas G, Atif RM, Hameed A (2019) Recent advances in breeding, marker assisted selection and genomics of blackgram (Vigna mungo (L.) Hepper). In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_2

  • Baruah IK, Panda D, Das DJ, Acharjee S, Sen P, Sarmah BK (2017) Bruchid egg induced transcript dynamics in developing seeds of blackgram (Vigna mungo) PLoS ONE 12(4):e0176337. https://doi.org/10.1371/journal.pone.0176337. PMID: 28448540; PMCID: PMC5407641

  • Basak J, Kundagramy S, Ghose TK, Pal A (2005) Development of yellow mosaic virus (YMV) resistance linked DNA-marker in Vigna mungo from population segregating for YMV reaction. Mol Breed 14:375–383. https://doi.org/10.1007/s11032-005-0238-6

    Article  CAS  Google Scholar 

  • Beas-Fernández R, De Santiago-De SA, Hernández-Delgado S, Mayek-Pére N (2006) Characterization of mexican and nonmexican isolates of Macrophomina phaseolina based on morphological characteristics, pathogenicity on bean seeds and endoglucanase genes. J Plant Pathol 88:53–60

    Google Scholar 

  • Bharali A, Bhagawati B, Uday K (2019) Demonstration on efficacy of Pseudomonas fluorescens and Azotobacter sp. against Meloiodgyne incognita in farmers field of Assam. Intl J Curr Microbiol Appl Sci 8:2572–2581

    Google Scholar 

  • Borah PK, Jindal JK, Verma JP (2000) Biological management of bacterial leaf spot of mungbean caused by Xanthomonas axonopodis pv. vignaeradiatae. Ind Phytopathol 53(4):384–394

    Google Scholar 

  • Bressano M, Giachero ML, Luna CM, Ducasse DA (2010) Anin vitro method for examining infection of soybean roots by Macrophomina phaseolina. Physiol Mol Pathol 74:201–204

    Google Scholar 

  • Chaitieng B, Kaga A, Han OK, Wang XW, Wongkaew S, Laosuwan P, Tomooka N, Vaughan DA (2002) Mapping a new source of resistance to powdery mildew in mungbean. Plant Breed 121:521–525. https://doi.org/10.1046/j.1439-0523.2002.00751.x

    Article  CAS  Google Scholar 

  • Chakrabarti U, Nageswari S, Mishra SD (2001) In-vitro study on the effect of neem products on germination of mungbean seeds. Curr Nematol 12:35–37

    Google Scholar 

  • Chakraborty N, Basak J (2018) Comparative transcriptome profiling of a resistant vs. susceptible Vigna mungo cultivar in response to Mungbean yellow mosaic India virus infection reveals new insight into MYMIV resistance. Curr Plant Biol 15:8–24

    Google Scholar 

  • Chandel KPS, Lester RN, Starling RJ (1984) The wild ancestors of urd and mung beans (Vigna mungo (L.) Hepper and V. radiata (L.) Wilczek). J Linn Soc 89(1):85–96

    Google Scholar 

  • Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, et al (2014) QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theor Appl Genet 127(3):691–702. https://doi.org/10.1007/s00122-013-2251-1

  • Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol Breed 28:255–264. https://doi.org/10.1007/s11032-010-9478-1

    Article  Google Scholar 

  • Chen HM, Liu CA, George- Kuo C, Chien CM, Sun HC, Huang CC, Lin YC, Ku HM (2007) Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica 157:113–122. https://doi.org/10.1007/s10681-007-9400-z

    Article  CAS  Google Scholar 

  • Dash S, Campbell JD, Cannon EK, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG, Singh J, Umale PE, Weeks NT, Wilkey AP, Farmer AD, Cannon SB (2016) Legume information system (LegumeInfo. org): a key component of a set of federated data resources for the legume family. Nucl Acids Res 44:D1181-D1188

    Google Scholar 

  • Deeksha J, Tripathi HS (2002) Cultural, biological and chemical control of anthracnose of urdbean. J Mycol Plant Pathol 32(1):52–55

    Google Scholar 

  • Dhingra OD, Sinclair JB (1978) Biology and Pathology of Macrophomina phaseolina. Universidade Federal de Vicosa, Minas Gerais, Brazil

    Google Scholar 

  • Dubey SC (2007) Integrating bioagent with botanical and fungicide in different modes of application for better management of web blight and mungbean (Vigna radiata) yield. Ind J Agric Sci 77(3):162–165

    CAS  Google Scholar 

  • Dubey SC, Patel BKC (2001) Evaluation of fungal antagonists against Thanatephorus cucumeris causing web blight of urd and mung bean. Indian Phytopathol 54:206–209

    Google Scholar 

  • Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20(1):238. https://doi.org/10.1186/s13059-019-1832-y.PMID:31727128;PMCID:PMC6857279

    Article  PubMed  PubMed Central  Google Scholar 

  • EPPO Global Database (2021) EPPO. Available Online: https://gd.eppo.int

  • Fery RL, Dukes PD, Jr CFP (1977) Yield loss of southern pea (Vigna unguiculata) caused by Cercospora leaf spot. Plant Dis Rep 61(9):741–743

    Google Scholar 

  • Fujii K, Ishimoto M, Kitamura K (1989) Patterns of resistance to bean weevils (Bruchidae) in Vigna radiata-mungo-sublobata complex inform the breeding of new resistant varieties. Appl Entomol Zool 25:126–132

    Google Scholar 

  • Ganguli S, Dey A, Banik R, Kundu A, Pal A (2016) Analyses of MYMIV-induced transcriptome in Vigna mungo as revealed by next generation sequencing. Genomics Data 7:226–228. https://doi.org/10.1016/j.gdata.2016.01.005.PMID:26981413;PMCID:PMC4778624

    Article  PubMed  PubMed Central  Google Scholar 

  • Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT et al (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137(4):1228–1235. https://doi.org/10.1104/pp.105.060871

  • Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR et al (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: Osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:586. https://doi.org/10.3389/fpls.2017.00586

  • Grewal JS, Machendra P, Kulshrestha DP (1980) Control of Cercospora leaf spot of green gram by spraying Bavistin. Indian J Agric Sci 50:707–711

    Google Scholar 

  • Gupta S, Gupta DS, Pratap ATK, A, Kumar J (2013) Inheritance and molecular tagging of MYMIV resistance gene in blackgram (Vigna mungo L. Hepper). Euphytica 193:27–37. https://doi.org/10.1007/s10681-013-0884-4

    Article  CAS  Google Scholar 

  • Haque MF, Mukherjee AK, Mahto RN, Jha DK, Chakraborty M et al (1997) Birsa Urid–1—a new variety for Chotanagpur region of Bihar. J Res 9:177–178

    Google Scholar 

  • Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, Carbajo M (2020) Ensembl Genomes 2020—enabling non-vertebrate genomic research. Nucleic acids res 48(D1):D689–D695

    Google Scholar 

  • Hull R (2004) Matthews plant virology. Academic Press, 4th edn. Elsevier, India, pp 180–182

    Google Scholar 

  • Humphry ME, Magner T, McIntyre CL, Aitken EA, Liu CJ (2003) Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L. Wilczek) by QTL analysis. Genome 46(5):738–744. https://doi.org/10.1139/g03-057

  • Jasrotia RS, Iquebal MA, Yadav PK et al. (2017) Development of transcriptome based web genomic resources of yellow mosaic disease in Vigna mungo. Physiol Mol Biol Plants 23:767–777. https://doi.org/10.1007/s12298-017-0470-7

  • Jasrotia RS, Yadav PK, Iquebal MA, Bhatt SB, Arora V, Angadi UB, Tomar RS, Jaiswal S, Rai A, Kumar D (2019) VigSatDB: Genome-wide microsatellite DNA marker database of three species of Vigna for germplasm characterization and improvement, Database. https://doi.org/10.1093/database/baz055

  • Javaid A, Saddique A (2011) Management of Macrophomina root rot of mungbean using dry leaves manure of Datura metel as soil amendment. Span J Agric Res 9:901–905

    Google Scholar 

  • Jayasekhar M, Ebenezar EG (2016) Management of powdery mildew of black gram (Vigna mungo) caused by Erysiphe polygoni. Agric Sci Digest A Res J 36(1):72–74

    Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443. https://doi.org/10.1038/ncomms6443

    Article  CAS  PubMed  Google Scholar 

  • Kasettranan W, Somta P, Srinives P (2010) Mapping of quantitative trait loci controlling powdery mildew resistance in mungbean (Vigna radiata (L.) Wilczek). J Crop Sci Biotechnol 13:155–161. https://doi.org/10.1007/s12892-010-0052-z

    Article  Google Scholar 

  • Kaur S, Dhillon GS, Brar SK, Chauhan VB (2012) Carbohydrate degrading enzyme production by plant pathogenic mycelia and microsclerotia isolates of Macrophomina phaseolina through koji fermentation. Ind Crops Prod d 36:140–148

    CAS  Google Scholar 

  • Kim DK, Jeong SC, Gorinstein S, Chon SU (2012) Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods Hum Nutr (dordrecht, Netherlands) 67(1):71–75. https://doi.org/10.1007/s11130-011-0273-x

    Article  CAS  Google Scholar 

  • Kim SK, Nair RM, Lee J, Lee SH (2015) Genomic resources in mungbean for future breeding programs. Front Plant Sci 6:626

    PubMed  PubMed Central  Google Scholar 

  • Kitsanachandee R, Somta P, Chatchawankanphanich O, Akhtar KP, Shah TM et al (2013) Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breed Sci 63(4):367–73

    Google Scholar 

  • Kumar S, Kumar A, Tripathi HS (2018) Urdbean web blight and its management strategies: a review. Agric Rev 39:210–217. https://doi.org/10.18805/ag.R-1750

    Article  Google Scholar 

  • Kumari R, Shekhawat KS, Gupta R, Khokhar MK (2012) Integrated Management against Root-rot of Mungbean [Vigna radiata (L.) Wilczek] incited by Macrophomina phaseolina. J Plant Pathol Microbiol 3:136

    Google Scholar 

  • Kundu A, Pal A (2012) Identification and characterization of elite inbred lines with MYMIV-resistance in Vigna mungo. Field Crop Res 135:116–125

    Google Scholar 

  • Kundu A, Patel A, Pal A (2013a) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep 32(10):1647–1658. https://doi.org/10.1007/s00299-013-1478-2 Epub 2013 Jul 19 PMID: 23868569

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Chakraborty D, Kundu A, Pal A (2013b) Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Sci 11(1):15. https://doi.org/10.1186/1477-5956-11-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu A, Patel A, Paul S, Pal A (2015) Transcript dynamics at early stages of molecular interactions of MYMIV with resistant and susceptible genotypes of the leguminous host Vigna Mungo. Plos One 10(4):e0124687. https://doi.org/10.1371/journal.pone.0124687. PMID: 25884711; PMCID: PMC4401676

  • Kundu A, Paul S, Dey A, Pal A (2017) High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Plant Sci 257:96–105. https://doi.org/10.1016/j.plantsci.2017.01.016 Epub 2017 Jan 31 PMID: 28224923

    Article  CAS  PubMed  Google Scholar 

  • Kundu A, Singh PK, Dey A, Ganguli S (2019) Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep 9:8858. https://doi.org/10.1038/s41598-019-45383-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lekhi P, Gill RK, Kaur S (2018) Identification of molecular marker linked to mungbean yellow mosaic virus (MYMV) resistance in Vigna radiata (L.) Wilczek. Elec J Plant Breed 9(3):839–45

    Google Scholar 

  • Lin WJ, Ko CY, Liu MS, Kuo CY, Wu DC et al (2016) Transcriptomic and proteomic research to explore bruchid-resistant genes in mungbean isogenic lines. J Agric Food Chem 64(34):6648–6658

    CAS  PubMed  Google Scholar 

  • Maiti S, Basak J, Kundagrami S, Kundu A, Pal A (2011) Molecular marker-assisted genotyping of Mungbean Yellow Mosaic India Virus resistant germplasms of mungbean and urdbean. Mol Biotechnol 47:95–104. https://doi.org/10.1007/s12033-010-9314-1

    Article  CAS  PubMed  Google Scholar 

  • Mandhare VK, Suryawanshi AV (2008) Dual resistance against powdery mildew and yellow mosaic virus in green gram. Agri Sci Digest 28(1):39–41

    Google Scholar 

  • Mayo MA (2005) Changes to virus taxonomy 2004. Arch Virol 150(1):189–198. https://doi.org/10.1007/s00705-004-0429-1

    Article  CAS  Google Scholar 

  • Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G, Uehara H, Hingamp P, Goto S, Ogata H (2016) Linking virus genomes with host taxonomy. Viruses 3:66

    Google Scholar 

  • Mishra S, Macedo M, Panda S, Panigrahi J (2018) Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties. Ann Appl Biol 172:4–19. https://doi.org/10.1111/aab.12401

    Article  Google Scholar 

  • Mohan S, Sheeba A, Murugan E, Ibrahim SM (2014) Screening of mungbean germplasm for resistance to mungbean yellow mosaic virus under natural condition. Ind J Sci Technol 7(7):891–896

    Google Scholar 

  • Mushtaq Z, Imran M, Salim-ur-Rehman ZT, Ahmad RS, Arshad MU (2014) Biochemical perspectives of xylitol extracted from indigenous agricultural by-product mung bean (Vigna radiata) hulls in a rat model. J Sci Food Agric 94(5):969–974. https://doi.org/10.1002/jsfa.6346

    Article  CAS  PubMed  Google Scholar 

  • Naito K, Kaga A, Tomooka N, Kawase M (2013) De novo assembly of the complete organelle genome sequences of azuki bean (Vigna angularis) using next-generation sequencers. Breed Sci 63(2):176–182. https://doi.org/10.1270/jsbbs.63.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nariani TK (1960) Yellow mosaic of mung (Phaseolus aureus L.). Ind Phytopathol 13:24–29

    Google Scholar 

  • Pandey S (2019) Review on medicinal importance of Vigna genus. Plant Sci Today 6(4):450–456

    Google Scholar 

  • Paul S, Kundu A, Pal A (2014) Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing. J Integr Plant Biol 56(1):15–23. https://doi.org/10.1111/jipb.12115

    Article  CAS  PubMed  Google Scholar 

  • Pavaraj M, Ga B, Baskaran S (2012) Evaluation of some plant extracts for their nematicidal properties against root-knot nematode, Meloidogyne incognita. J Biopest 5:106–110

    Google Scholar 

  • Poehlman JM (1991) The Mungbean. Oxford and IBH Publishers, New Delhi

    Google Scholar 

  • Poolsawat O, Kativat C, Arsakit K, Tantasawat PA (2017) Identification of quantitative trait loci associated with powdery mildew resistance in mungbean using ISSR and ISSR-RGA markers. Mol Breed 37:150. https://doi.org/10.1007/s11032-017-0753-2

    Article  CAS  Google Scholar 

  • Pootakham W, Nawae W, Naktang C, Sonthirod C, Yoocha T et al (2020) A chromosome-scale assembly of the black gram (Vigna mungo) genome. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.13243. Epub ahead of print. PMID: 32794377

  • Pratap A, Gupta DS, Singh BB, Kumar S (2013) Development of super early genotypes in greengram [Vigna radiata (L.) Wilczek]. Leg Res 36(2):105–110

    Google Scholar 

  • Purseglove JW (1974) tropical crops, dicotyledons. Longman group, London

    Google Scholar 

  • Raizada A, Souframanien J (2019) Transcriptome sequencing, de novo assembly, characterisation of wild accession of blackgram (Vigna mungo var. silvestris) as a rich resource for development of molecular markers and validation of SNPs by high resolution melting (HRM) analysis. BMC Plant Biol 19(1):358. https://doi.org/10.1186/s12870-019-1954-0. PMID: 31419947; PMCID: PMC6697964

  • Rathaiah Y, Sharma SK (2004) A new leaf spot disease on Mungbean caused by Colletotrichum trauncatum. J Mycol Plant Pathol 32:176–178

    Google Scholar 

  • Reddy KR, Singh DP (1995) Inheritance of resistance to mungbean yellow mosaic virus. Madras Agric J 88:199–201

    Google Scholar 

  • Reddy KS, Pawar SE, Bhatia CR (1994) Inheritance of powdery mildew (Erysiphe polygoni DC) resistance in mungbean (Vigna radiata L.Wilczek). Theor Appl Genet 88:945–948

    CAS  PubMed  Google Scholar 

  • Rees DP (2004) Insects of stored products. CSIRO Publishing, Collingwood Victoria, Australia

    Google Scholar 

  • Sahni S, Prasad B, Kumari S (2016) Diseases of Urd/Mung bean crops and their management integrated approaches. In: Chand G, Kumar S (eds) Crop diseases and their management. Apple Academic Press, New York, pp 57–78. https://doi.org/10.1201/b19891-6

  • Sakai H, Naito K, Takahashi Y, Sato T, Yamamoto T, Muto I, Itoh T, Tomooka N (2016) The Vigna Genome Server,‘Vig GS’: A genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the Azuki Bean, Vigna angularis(Willd.) Ohwi & Ohashi. Plant Cell Physiol 57:e2

    Google Scholar 

  • Sarkar S, Ghosh S, Chatterjee M, Das P (2011) Molecular markers linked with bruchid resistancein Vigna radiata var. Sublobata and their validation. J Plant Biochem Biotechnol 20:155–160

    Google Scholar 

  • Sastry KSM, Singh SJ (1973) Field evaluation of insecticides for the control of whitefly (Bemisia tabaci) in relation to the incidence of yellow vein mosaic of okra (Abelmoschus esculentus). Ind Phytopathol 26:129–138

    Google Scholar 

  • Schafleitner R, Huang SM, Chu SH, Yen JY, Lin CY et al (2016) Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biol 16(1):159. https://doi.org/10.1186/s12870-016-0847-8

  • Schneider RW, Williams RJ, Sinclair JB (1976) Cercospora leaf spot of cowpea: models for estimating yield loss. Phytopathology 66(4):384–388

    Google Scholar 

  • Schrire BD (2005) Tribe Phaseoleae. In: Lewis G, Schrire B, Mackinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens, Kew, pp 393–431

    Google Scholar 

  • Shailbala THS (2007) Current status of research on web blight disease of urd bean: a review. Agri Rev 28(1):1–9

    Google Scholar 

  • Sharma HC, Khare MN, Joshi LK, Kumar SM (1971) Efficacy of fungicides in the control of diseases of kharif pulses mung and urad. All India Workshop on Kharif Pulses, p 2

    Google Scholar 

  • Sharma J, Tripathi HS (2001) Influence of environmental factors on web blight development in Urdbean (Vigna mungo (L.) Hepper. J Mycol Plant Pathol 31(1):54–58

    Google Scholar 

  • Sharma OP, Bambawale OM, Gopali JB, Bhagat S, Yelshetty S, et al (2011) Field guide: Mungbean and Urdbean. NCIPM, New Delhi, 40 pp.

    Google Scholar 

  • Sharma L, Priya M, Bindumadhava H, Nair RM, Nayyar H (2016) Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Sci Hort (amsterdam) 213:379–391. https://doi.org/10.1016/j.scienta.2016.10.033

    Article  Google Scholar 

  • Sikora RA, Greco N, Silva JFV (2005) Nematode parasites of food legumes. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI Publishing, England, pp 259–318

    Google Scholar 

  • Singh CM, Pratap A, Gupta S, Biradar RS, Singh NP (2020) Association mapping for mungbean yellow mosaic India virus resistance in mungbean (Vigna radiata L. Wilczek). 3 Biotechnology 10(2):33. https://doi.org/10.1007/s13205-019-2035-7

  • Singh DP (1981) Breeding for resistance to diseases in greengram and blackgram. Theor Appl Genet 59:1–10

    CAS  PubMed  Google Scholar 

  • Singh DP (1997) Tailoring the plant type in pulse crop. Plant Breed 67(9):1213–1220

    Google Scholar 

  • Singh J (2006) Occurrence, variability in an management of web blight pathogen (Rhizoctonia solani Kṻhn) of mungbean [Vigna radiata (L.) Wilczek]. PhD thesis, BHU, Varanasi, UP

    Google Scholar 

  • Sivaprakasam K, Marimuthu T, Radhakrishnan T, Vairavan K (1981) Influence of date of sowing and spacing on the incidence of powdery mildew of greengram and blackgram. Madras Agri J 68:65–67

    Google Scholar 

  • Somta P (2007) Genetics and breeding of resistance to bruchids (Callosobruchus spp.) in Vigna Crops: a review. NU SciJ 4:1–17

    Google Scholar 

  • Somta P, Kaga A, Tomooka N, Isemura T, Vaughan DA, Srinives P (2008) Mapping of quantitative trait loci for a new source of resistance to bruchids in the wild species Vigna nepalensis Tateishi & Maxted (Vigna subgenus Ceratotropis). Theor Appl Genet 117(4):621–628. https://doi.org/10.1007/s00122-008-0806-3

    Article  CAS  PubMed  Google Scholar 

  • Souframanien J, Gopalakrishna T (2006) ISSR and SCAR markers linked to the mungbean yellow mosaic virus (MYMV) resistance gene in blackgram [Vigna mungo (L.) Hepper]. Plant Breed 125:619–622. https://doi.org/10.1111/j.1439-0523.2006.01260.x

    Article  CAS  Google Scholar 

  • Souframanien J, Raizada A, Dhanasekar P, Suprasanna P (2020) Draft genome sequence of the pulse crop blackgram [Vigna mungo (L.) Hepper] reveals potential R-genes. bioRxiv. https://doi.org/10.1101/2020.06.21.163923

  • Soundararajan R, Chitra N, Geetha S, Poorani J (2012) Biological control of bruchid Callosobruchus maculatus (F.) in blackgram. J Biopestic 5:192–195

    Google Scholar 

  • Srinives P, Somta P, Somta C (2007) Genetics and breeding of resistance to bruchids (Callosobruchus spp.) in Vigna crops: a review. NU Sci J 4(1):1–7

    Google Scholar 

  • Srivastava AK, Singh T, Jana TK, Arora DK (2001) Microbial colonization of Macrophomina phaseolina and suppression of charcoal rot of chickpea. In: Sinha A (ed) Microbes and plants. Vedams eBooks (P) Ltd., New Delhi, pp 269–319

    Google Scholar 

  • Tang D, Dong Y, Ren H, Li L, He C (2014) A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J 8(1):4. https://doi.org/10.1186/1752-153X-8-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangphatsornruang S, Somta P, Uthaipaisanwong P, Champrasert J et al (2009) Characterization of microsatellites and gene contents from genome shotgun sequences from mungbean (Vigna radiata (L.) Wilczek) BMC Plant Biol 9:137

    Google Scholar 

  • Thind BS (2012) Phytopathogenic procaryotes and plant diseases. Scientific Publishers, Jodhpur

    Google Scholar 

  • Tomooka N, Naito K, Kaga A, Sakai H, Isemura T, Ogiso-Tanaka E, Iseki K, Takahashi Y (2014) Evolution, domestication and neo-domestication of the genus Vigna. Plant Genet Resour 12(S1):S168–S171. https://doi.org/10.1017/S1479262114000483

    Article  CAS  Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagus, root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77. https://doi.org/10.1146/annurev.phyto.39.1.53

    Article  CAS  PubMed  Google Scholar 

  • Vadivel K, Manivannan N, Mahalingam A, Satya VK, Vanniarajan C, Ragul S (2021) Identification and validation of quantitative trait loci of mungbean yellow mosaic virus disease resistance in blackgram [Vigna mungo (L). Hepper]. Legume Res. https://doi.org/10.18805/LR-4459

  • Verma HN, Rastogi P, Prasad V, Srivastava A (1985) Possible control of natural virus infection of Vigna radiata and Vigna mungo by plant extracts. Ind J Plant Pathol 3:21–24

    Google Scholar 

  • Vijay K, Pavaraj M, Munisamy S, Rajan MK (2009) Effect of seed extract of Nerium indicum on growth parameters of black gram infected with root-knot nematode. Ind J Nematol 39(1):107–108

    Google Scholar 

  • Wang H, Guo X, Li Q, Lu Y, Huang W et al (2020) Integrated transcriptomic and metabolic framework for carbon metabolism and plant hormones regulation in Vigna radiata during post-germination seedling growth. Sci Rep 10(1):3745. https://doi.org/10.1038/s41598-020-60771-3.PMID:32111951;PMCID:PMC7048927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Inaba Y, Kimura K, Asahara SI, Kido Y et al (2017) Dietary mungbean protein reduces hepatic steatosis, fibrosis, and inflammation in male mice with diet-induced, nonalcoholic fatty liver disease. J Nutr 147(1):52–60. https://doi.org/10.3945/jn.116.231662 Epub 2016 Nov 30 PMID: 27903831

    Article  CAS  PubMed  Google Scholar 

  • Wheeler H (1975) Plant pathogenesis. Academic press, London

    Google Scholar 

  • Wu X, Wang Y, Tang H (2020) Quantitative metabonomic analysis reveals the germination-associated dynamic and systemic biochemical changes for mungbean (Vigna radiata) Seeds. J Proteome Res 19(6):2457–2470. https://doi.org/10.1021/acs.jproteome.0c00181

    Article  CAS  PubMed  Google Scholar 

  • Yadav IC, Chand, JN, Saharan GS (1981) Inheritance of resistance in mungbean to bacterial leaf spot. In: Lozano JC (ed) Proceedings of the fifth international conference on plant pathogenic bacteria. Centro Internacional de Agricultura Tropical, Cali, Colombia, pp 580–583

    Google Scholar 

  • Yeap SK, Mohd Ali N, Mohd Yusof H, Alitheen NB, Beh BK, et al (2012) Antihyperglycemic effects of fermented and nonfermented mungbean extracts on alloxan-induced-diabetic mice. J Biomed Biotechnol 2012:285430. https://doi.org/10.1155/2012/285430. Epub 2012 Oct 3. PMID:23091343; PMCID:PMC3469204

  • Yoshida Y, Marubodee R, Ogiso-Tanaka E, Iseki K, Isemura T et al (2016) Salt tolerance in wild relatives of adzuki bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genet Resour Crop Evol 63:627–637

    CAS  Google Scholar 

  • Young ND, Danesh D, Menancio-Hautea D, Kumar L (1993) Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet 87(1–2):243–249. https://doi.org/10.1007/BF00223772

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Kumar L, Menancio-Hautea D, Danesh D, Talekar NS et al (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 84(7–8):839–844. https://doi.org/10.1007/BF00227394

  • Zhang MC, Wang DM, Zheng Z, Humphry M, Liu CJ (2008) Development of PCR-based markers for a major locus conferring powdery mildew resistance in mungbean (Vigna radiata). Plant Breed 127:429–432. https://doi.org/10.1111/j.1439-0523.2008.01521.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, A., Ganguli, S., Pal, A. (2022). Genomic Designing Towards Biotic Stress Resistance in Mungbean and Urdbean. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91043-3_8

Download citation

Publish with us

Policies and ethics