Skip to main content

Congruence Relations for Büchi Automata

  • Conference paper
  • First Online:
Formal Methods (FM 2021)

Abstract

We revisit congruence relations for Büchi automata, which play a central role in automata-based formal verification. The size of the classical congruence relation is in \(3^{\mathcal {O}(n^{2})}\), where n is the number of states of the given Büchi automaton. We present improved congruence relations that can be exponentially coarser than the classical one. We further give asymptotically optimal congruence relations of size \(2^{\mathcal {O}(n \log n)}\). Based on these optimal congruence relations, we obtain an optimal translation from a Büchi automaton to a family of deterministic finite automata (FDFA), which can be made to accept either the original language or its complement. To the best of our knowledge, our construction is the first direct and optimal translation from Büchi automata to FDFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the normalized decomposition of UP-words defined in [17], which is different from the one given in [3]. Ours is a definition for a UP-word, while their definition is applied to a decomposition. However, this difference does not affect the definition of a saturated FDFA to be given later.

References

  1. Abdulla, P.A., et al.: Simulation subsumption in Ramsey-based Büchi automata universality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_14

    Chapter  Google Scholar 

  2. Abdulla, P.A., et al.: Advanced Ramsey-based Büchi automata inclusion testing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_13

    Chapter  Google Scholar 

  3. Angluin, D., Boker, U., Fisman, D.: Families of DFAs as acceptors of \(\omega \)-regular languages. Log. Methods Comput. Sci. 14(1), 1–21 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci. 650, 57–72 (2016)

    Article  MathSciNet  Google Scholar 

  5. Breuers, S., Löding, C., Olschewski, J.: Improved Ramsey-based Büchi complementation. In: FOSSACS, pp. 150–164 (2012)

    Google Scholar 

  6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings of the International Congress on Logic, Method, and Philosophy of Science 1960, pp. 1–12. Stanford University Press (1962)

    Google Scholar 

  7. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational \(\omega \)-languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58027-1_27

    Chapter  MATH  Google Scholar 

  8. Clemente, L., Mayr, R.: Efficient reduction of nondeterministic automata with application to language inclusion testing. Logic. Methods Comput. Sci. 15(1), 12:1-12:73 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)

    Article  Google Scholar 

  10. Fogarty, S., Kupferman, O., Wilke, T., Vardi, M.Y.: Unifying Büchi complementation constructions. Logic. Methods Comput. Sci. 9(1), 1–22 (2013)

    MATH  Google Scholar 

  11. Fogarty, S., Vardi, M.Y.: Efficient Büchi universality checking. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_17

    Chapter  Google Scholar 

  12. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi automata unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 724–735. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_59

    Chapter  MATH  Google Scholar 

  13. Kuperberg, D., Pinault, L., Pous, D.: Coinductive algorithms for Büchi automata. In: Hofman, P., Skrzypczak, M. (eds.) DLT 2019. LNCS, vol. 11647, pp. 206–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24886-4_15

    Chapter  Google Scholar 

  14. Kupferman, O., Vardi, M.Y.: Verification of fair transition systems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 372–382. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_84

    Chapter  Google Scholar 

  15. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods Syst. Des. 19(3), 291–314 (2001)

    Article  Google Scholar 

  16. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Comput. Logic 2(3), 408–429 (2001)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Chen, Y.F., Zhang, L., Liu, D.: A novel learning algorithm for Büchi automata based on family of DFAs and classification trees. In: TACAS, pp. 208–226. Springer (2017). https://doi.org/10.1007/978-3-662-54577-5_12

  18. Li, Y., Tsay, Y.K., Turrini, A., Vardi, M.Y., Zhang, L.: Congruence relations for Büchi automata. CoRR abs/2104.03555 (2021)

    Google Scholar 

  19. Myhill, J.: Finite automata and the representation of events. In: Technical Report WADD TR-57-624, pp. 112–137 (1957)

    Google Scholar 

  20. Nerode, A.: Linear automaton transformations. Am. Math. Soc. 9, 541–544 (1958)

    Article  MathSciNet  Google Scholar 

  21. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. Theor. Comput. Sci. 49(2–3), 217–237 (1987)

    Article  Google Scholar 

  22. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 133–191. Elsevier and MIT Press (1990)

    Google Scholar 

  23. Yan, Q.: Lower bounds for complementation of \(\omega \)-automata via the full automata technique. Logic. Methods Comput. Sci. 4(1:5), 1–20 (2008)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable suggestions and comments about this paper. Work supported in part by the Guangdong Science and Technology Department (Grant No. 2018B010107004), NSF grants IIS-1527668, CCF-1704883 and IIS-1830549, and an award from the Maryland Procurement Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Tsay, YK., Turrini, A., Vardi, M.Y., Zhang, L. (2021). Congruence Relations for Büchi Automata. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90870-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90869-0

  • Online ISBN: 978-3-030-90870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics