Skip to main content

Separable Network Games with Compact Strategy Sets

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2021)

Abstract

A separable network game is a multiplayer finite strategic game in which each player interacts only with adjacent players in a simple undirected graph. The utility of each player results from the aggregation of utilities in the corresponding two-player games. In our contribution, we extend this model to infinite games whose strategy sets are compact subsets of the Euclidean space. We show that Nash equilibria of a zero-sum continuous network game can be characterized as optimal solutions to a specific infinite-dimensional linear optimization problem. In particular, when the utility functions are multivariate polynomials, this optimization formulation enables us to approximate the equilibria using a hierarchy of semidefinite relaxations. We present a security game over a complete bipartite graph in which the nodes are attackers and defenders, who compete for control over given targets.

This material is based upon work supported by, or in part by, the Army Research Laboratory and the Army Research Office under grant number W911NF-20-1-0197. The authors acknowledge the support by the project Research Center for Informatics (CZ.02.1.01/0.0/0.0/16_019/0000765).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, L., Horčík, R., Kasl, T., Kroupa, T.: Double oracle algorithm for computing equilibria in continuous games. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5070–5077 (2021)

    Google Scholar 

  2. Bailey, J.-P., Piliouras, G.: Multi-agent learning in network zero-sum games is a Hamiltonian system. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS, Montreal, QC, Canada, pp. 233–241. International Foundation for Autonomous Agents and Multiagent Systems (2019)

    Google Scholar 

  3. Baye, M.-R., Kovenock, D., de Vries, C.-G.: The solution to the tullock rent-seeking game when \(R > 2\): mixed-strategy equilibria and mean dissipation rates. Public Choice 81(3), 363–80 (1994). https://doi.org/10.1007/BF01053238

    Article  Google Scholar 

  4. Billingsley, P.: Probability and Measure, 3rd edn. Sons Inc., New York (1995)

    MATH  Google Scholar 

  5. Bregman, L.M., Fokin, I.N.: On separable non-cooperative zero-sum games. Optimization 44(1), 69–84 (1998). https://doi.org/10.1080/02331939808844400

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, Y., Daskalkis, C.: On minmax theorems for multiplayer games. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pp. 217–234. Society for Industrial and Applied Mathematics (2011). https://doi.org/10.1137/1.9781611973082.20

  7. Cai, Y., Candogan, O., Daskalakis, C., Papadimitriou, C.: Zero-sum polymatrix games: a generalization of minmax. Math. Oper. Res. 41(2), 648–655 (2016). https://doi.org/10.1287/moor.2015.0745

    Article  MathSciNet  MATH  Google Scholar 

  8. Daskalakis, C., Papadimitriou, C.H.: On a network generalization of the minmax theorem. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 423–434. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_35

    Chapter  Google Scholar 

  9. Dresher, W., Karlin, S., Shapley, L.-S.: Polynomial games. Contributions to the Theory of Games. Ann. Math. Stud. 1, 161–180 (1950). https://doi.org/10.7249/P100

    Article  MATH  Google Scholar 

  10. Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ewerhart, C., Valkanova, K.: Fictitious play in networks. Games Econom. Behav. 123, 182–206 (2020). https://doi.org/10.1016/j.geb.2020.06.006

    Article  MathSciNet  MATH  Google Scholar 

  12. Glicksberg, I.-L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. In: Proceedings of the American Mathematical Society, pp. 170–174 (1952). https://doi.org/10.1090/S0002-9939-1952-0046638-5

  13. Henrion, D., Korda, M., Lasserre J.B.: Moment-SOS Hierarchy. The Lectures in Probability, Statistics, Computational Geometry, Control And Nonlinear PDEs, vol. 4 (2020). https://doi.org/10.1142/q0252

  14. Laraki, R., Lasserre, J.B.: Semidefinite programming for min-max problems and games. Math. Program. 131(1–2), 305–332 (2012)

    Article  MathSciNet  Google Scholar 

  15. Lasserre, J.B.: An Introduction to Polynomial and Semi-algebraic Optimization, vol. 52. Cambridge University Press, Cambridge (2015). https://doi.org/10.1017/CBO9781107447226

    Book  MATH  Google Scholar 

  16. Osorio, A.: The lottery blotto game. Econ. Lett. 120(2), 164–66 (2013). https://doi.org/10.1016/j.econlet.2013.04.012

    Article  MathSciNet  MATH  Google Scholar 

  17. Parrilo, P.: Polynomial games and sum of squares optimization. In: 2006 45th IEEE Conference on Decision and Control, pp. 2855–2860 (2006)

    Google Scholar 

  18. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969–984 (1993). https://doi.org/10.1016/S0764-4442(99)80251-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Rubinstein, A.: Inapproximability of Nash equilibrium. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, Portlan, Oregon, USA, pp. 409–418. Association for Computing Machinery (2015). https://doi.org/10.1145/2746539.2746578

  20. Stein, N.-D., Ozdaglar, A., Parrilo, P.-A.: Separable and low-rank continuous games. Int. J. Game Theory 37(4), 475–504 (2008)

    Article  MathSciNet  Google Scholar 

  21. Weisser, T., Legat, B., Coey, C., Kapelevich, L., Vielma, J.-P.: Polynomial and moment optimization in Julia and JuMP. JuliaCon (2019). https://pretalx.com/juliacon2019/talk/QZBKAU

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Kroupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kroupa, T., Vannucci, S., Votroubek, T. (2021). Separable Network Games with Compact Strategy Sets. In: Bošanský, B., Gonzalez, C., Rass, S., Sinha, A. (eds) Decision and Game Theory for Security. GameSec 2021. Lecture Notes in Computer Science(), vol 13061. Springer, Cham. https://doi.org/10.1007/978-3-030-90370-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90370-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90369-5

  • Online ISBN: 978-3-030-90370-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics