Skip to main content

Semiogenesis

  • Chapter
  • First Online:
Semiotic Agency

Part of the book series: Biosemiotics ((BSEM,volume 25))

Abstract

Semiogenesis is the emergence of new or modified sign relations in agents. New sign relations emerge by way of the interpretive activities of agents and subagents in adaptive evolution, development , physiology, and behavior . The gene-centric concept of evolution needs to be replaced by an agency-centric concept . The genome may change passively and randomly, but agents’ interpretation of the genome is active and guided by the logic of agent functions. Natural selection can facilitate semiogenesis in evolution indirectly by increasing the share of organisms with strong semiogenic potential in lineages, as well as by genetic accommodation. Developmental and physiological adaptations emerge via adjustment of living functions of individual organisms and their parts. Examples include the plasticity of the immune system, muscles, and other organs. Behavioral adaptations have reached high levels of semiotic freedom in animals with cognitive capacities, such as associative learning, representational memory, anticipation , and emotion . Advanced levels of cognition are characterized by unlimited associative learning, use of symbols, and rational thinking supported by intentionality, which represents a belief-desire coupling. Each new level of semiogenesis brings along qualitative changes that elevate the historical rate of increase of the overall semiotic complexity of agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A similar term, semiopoiesis, has been proposed recently by (Dos Santos 2018).

  2. 2.

    The notion of semiotic causation was introduced by Jesper Hoffmeyer, who defined it as the “bringing about of changes under the guidance of interpretation in a local context” (Hoffmeyer 2008: 149). In general, semiotic causation does not always imply semiogenesis as defined in this book; however in this context (i.e., creativity, ingenuity, and novelty), Tønnessen meant semiogenesis.

  3. 3.

    Here we present a radical version of the gene-centric approach and do not attribute it to any specific individual researcher. We are aware that many scientists who have worked within the neo-Darwinism paradigm have recognized its limitations and discussed alternative research approaches.

  4. 4.

    The notion of coevolution is traditionally applied to a pair of interacting species, such as a predator and its prey (Abrams 1991). But here we use it to describe evolutionary dependencies between parts of an organism, which constitute partially autonomous subagents (see also Chap. 10).

  5. 5.

    Here, for brevity, we use gene-centric terminology as if a mutation is a physical cause of phenotypic changes. In reality, the causation is semiotic rather than physical, and mediated by interpretation mechanisms.

  6. 6.

    After evolution.

  7. 7.

    Positive and negative selection in immunology should not be confused with positive natural selection.

  8. 8.

    Aphids are small plant-dwelling insects.

  9. 9.

    Barsalou (1999) contrasted modal representations with amodal ones, where concepts are represented by abstract elements (e.g., list of parts, frames, logic formula) that bear no similarity to perceptual states.

  10. 10.

    Most human symbols are not linked with biological functions, but they typically serve important intellectual, aesthetic, emotional or social functions.

  11. 11.

    Initially, the size of the genome was evaluated by total DNA content per cell, which led to the C-value paradox (Patrushev & Minkevich, 2008) (see also Chap. 5).

References

  • Abrams, P. A. (1991). The effects of interacting species on predator-prey coevolution. Theoretical Population Biology, 39(3), 241–262.

    Article  Google Scholar 

  • Adami, C., Ofria, C., & Collier, T. C. (2000). Evolution of biological complexity. Proceedings of the National Academy of Sciences of the U.S.A., 97(9), 4463–4468.

    Article  Google Scholar 

  • Andrade, E. (2011). Natural abduction: The bridge between individuals’ choices and the production of evolutionary innovations. Signs, 5, 112–146.

    Google Scholar 

  • Baldwin, M. J. (1896). A new factor in evolution. American Naturalist, 30, 441–451.

    Article  Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–609. discussion 610–660.

    Article  Google Scholar 

  • Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society B Biological Sciences, 358, 1177–1187.

    Article  Google Scholar 

  • Berg, L. S. (1969). Nomogenesis: Or, evolution determined by law. MIT Press.

    Google Scholar 

  • Bergson, H. (1998 [1911]). Creative evolution. Dover.

    Google Scholar 

  • Block, J. (1982). Assimilation, accommodation, and the dynamics of personality development. Child Development, 53(2), 281–295.

    Article  Google Scholar 

  • Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives, handbook I: The cognitive domain. David McKay Co.

    Google Scholar 

  • Brakefield, P. (2009). A focus on both form and function in examining selection versus constraint. In M. D. Laubichler & J. Maienschein (Eds.), Form and function in developmental evolution (pp. 112–131). Cambridge University Press.

    Chapter  Google Scholar 

  • Brentari, C. (2015). Jakob von UexkĂĽll: The discovery of the Umwelt between biosemiotics and theoretical biology (Biosemiotics) (Vol. 9). Springer.

    Google Scholar 

  • Campbell, C., Olteanu, A., & Kull, K. (2019). Learning and knowing as semiosis: Extending the conceptual apparatus of semiotics. Sign Systems Studies, 47(3/4), 352–381.

    Google Scholar 

  • Cariani, P. (1998). Towards an evolutionary semiotics: The emergence of new sign-functions in organisms and devices. In G. V. d. Vijver, S. Salthe, & M. Delpos (Eds.), Evolutionary systems (pp. 359–377). Kluwer.

    Chapter  Google Scholar 

  • Crick, F. H. (1958). On protein synthesis. In F. K. Sanders (Ed.), Symposia of the society for experimental biology, number XII: The biological replication of macromolecules (pp. 138–163). Cambridge University Press.

    Google Scholar 

  • Crick, F. H. (1970). Central dogma of molecular biology. Nature, 227(5258), 561–563.

    Article  Google Scholar 

  • CuĂ©not, L. (1914). ThĂ©orie de prĂ©adaptation. Scientia, 16, 60–67.

    Google Scholar 

  • D’Arcy Thompson, W. (1917). On growth and form. Cambridge University Press.

    Book  Google Scholar 

  • Darwin, C. M. A. (1866). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life (4th ed.). John Murray.

    Google Scholar 

  • Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain (1st ed.). W.W. Norton.

    Google Scholar 

  • Deacon, T. W. (2012). Beyond the symbolic species. In T. Schilhab, F. Stjernfelt, & T. Deacon (Eds.), The symbolic species evolved. Springer.

    Google Scholar 

  • Dennett, D. C. (1987). The intentional stance. MIT Press.

    Google Scholar 

  • Dennett, D. C. (2003). The Baldwin effect, a crane, not a skyhook. In B. H. Weber & D. J. Depew (Eds.), Evolution and learning: The Baldwin effect reconsidered (pp. 69–106). MIT Press.

    Google Scholar 

  • Depew, D. J., & Weber, B. H. (1995). Darwinism evolving: Systems dynamics and the genealogy of natural selection. MIT Press.

    Google Scholar 

  • Dor, D. (2015). The instruction of imagination: Language as a social communication technology. Oxford University Press.

    Book  Google Scholar 

  • Dor, D., & Jablonka, E. (2010). Canalization and plasticity in the evolution of linguistic communication. In R. K. Larson, V. Deprez, & H. Yamakido (Eds.), The evolution of human language (pp. 135–147). Cambridge University Press.

    Chapter  Google Scholar 

  • Dormont, L., Jay-Robert, P., Bessiere, J. M., Rapior, S., & Lumaret, J. P. (2010). Innate olfactory preferences in dung beetles. Journal of Experimental Biology, 213(Pt 18), 3177–3186.

    Article  Google Scholar 

  • Dos Santos, W. D. (2018). Carrying pieces of information in organocatalytic bytes: Semiopoiesis – A new theory of life and its origins. Biosystems, 164, 167–176.

    Article  Google Scholar 

  • Edelman, G. (1987). Neural Darwinism. The theory of neuronal group selection. Basic Books.

    Google Scholar 

  • Eigen, M., & Schuster, P. (1979). The hypercycle, a principle of natural self-organization. Springer.

    Google Scholar 

  • Fernando, C., Karishma, K. K., & Szathmary, E. (2008). Copying and evolution of neuronal topology. PLoS One, 3(11), e3775.

    Article  Google Scholar 

  • Ginsburg, S., & Jablonka, E. (2019). The evolution of the sensitive soul. Learning and the origin of consciousness. MIT Press.

    Google Scholar 

  • Giurfa, M. (2003). Cognitive neuroethology: Dissecting non-elemental learning in a honeybee brain. Current Opinion in Neurobiology, 13(6), 726–735.

    Article  Google Scholar 

  • Goldschmidt, R. (1940). The material basis of evolution. CT Yale University Press.

    Google Scholar 

  • Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society B: Biological Sciences, 205(1161), 581–598.

    Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation – A missing term in the science of form. Paleobiology, 8(1), 4–15.

    Article  Google Scholar 

  • Griffiths, P. E. (2001). Genetic information: A metaphor in search of a theory. Philosophy of Science, 68(3), 394–412.

    Article  Google Scholar 

  • GruszczyĹ„ski, R., & Varzi, A. C. (2015). Mereology then and now. Logic and Logical Philosophy, 24, 409–427.

    Article  Google Scholar 

  • Hamilton, M. J., & Walker, R. S. (2019). Nonlinear diversification rates of linguistic phylogenies over the Holocene. PLoS One, 14(7), e0213126.

    Article  Google Scholar 

  • Hendricks, W. O. (1989). Circling the square: On Greimas’s semiotics. Semiotica, 75(1/2), 95–122.

    Google Scholar 

  • Heuer, R. J., Jr. (1999). Psychology of intelligence analysis. Center for the Study of Intelligence.

    Google Scholar 

  • Hoffmeyer, J. (1992). Some semiotic aspects of the psycho-physical relation: The endo-exosemiotic boundary. In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics. The semiotic web 1991 (pp. 101–123). Mouton de Gruyter.

    Google Scholar 

  • Hoffmeyer, J. (1996). Signs of meaning in the universe. The natural history of signification. Indiana University Press.

    Google Scholar 

  • Hoffmeyer, J. (1997). Biosemiotics: Towards a new synthesis in biology. European Journal for Semiotic Studies, 9(2), 355–376.

    Google Scholar 

  • Hoffmeyer, J. (2008). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis (pp. 149–166). Springer.

    Google Scholar 

  • Hoffmeyer, J. (2013). Why do we need a semiotic understanding of life? In B. G. Henning & A. C. Scarfe (Eds.), Beyond mechanism: Putting life back into biology (pp. 147–168). Lexington Books.

    Google Scholar 

  • Hoffmeyer, J. (2014). Semiotic freedom: An emerging force. In N. H. Gregersen & P. Davis (Eds.), Information and the nature of reality: From physics to metaphysics (pp. 185–204). Cambridge University Press.

    Google Scholar 

  • Hoffmeyer, J., & Emmeche, C. (1991). Code-duality and the semiotics of nature. In M. Anderson & F. Merrell (Eds.), On semiotic modeling (pp. 117–166). Mouton de Gruyter.

    Chapter  Google Scholar 

  • Hoffmeyer, J., & Kull, K. (2003). Baldwin and biosemiotics: What intelligence is for. In B. H. Weber & D. J. Depew (Eds.), Evolution and learning: The Baldwin effect reconsidered (pp. 253–272). MIT Press.

    Google Scholar 

  • Iliadi, K. G., Gluscencova, O. B., & Boulianne, G. L. (2016). Psychomotor behavior: A practical approach in Drosophila. Frontiers in Psychiatry, 7, 153.

    Article  Google Scholar 

  • Jerison, H. J. (1973). Evolution of the brain and intelligence. Academic.

    Google Scholar 

  • Karvetski, C. W., Olson, K. C., Gantz, D. T., & Cross, G. A. (2013). Structuring and analyzing competing hypotheses with Bayesian networks for intelligence analysis. EURO Journal on Decision Processes, 1, 205–231.

    Article  Google Scholar 

  • Kauffman, S. A. (2000). Investigations. Oxford, New York: Oxford Univ. Press.

    Google Scholar 

  • Kauffman, S. A. (2014). Prolegomenon to patterns in evolution. Biosystems, 123, 3–8.

    Article  Google Scholar 

  • Koch, W. A. (Ed.). (1982). Semiogenesis. Essays on the analysis of the genesis of language, art, and literature (Kultur und evolution) (Vol. 1). Lang.

    Google Scholar 

  • Koch, W. A. (1984). Art: Biogenesis and semiogenesis. Semiotica, 49(3–4), 283–304.

    Google Scholar 

  • Krenke, N. P. (1933–1935). Somatische Indikatoren und Faktoren der Formbildung. Phänogenetische Variabilitat (Abh. Abt. Phytomorphogenese Timiriaseff-Inst., Vol. 1). Moskow.

    Google Scholar 

  • Kull, K. (2014). Towards a theory of evolution of semiotic systems. Chinese Semiotic Studies, 10(3), 485–495.

    Article  Google Scholar 

  • Kull, K. (2019). Steps towards the natural meronomy and taxonomy of semiosis: Emotin between index and symbol? Sign Systems Studies, 47(1/2), 88.

    Article  Google Scholar 

  • Kumar, S., & Subramanian, S. (2002). Mutation rates in mammalian genomes. Proceedings of the National Academy of Science of the U.S.A., 99(2), 803–808.

    Article  Google Scholar 

  • Laland, K. N., & O’Brien, M. J. (2010). Niche construction theory and archaeology. Journal of Archaeological Method and Theory, 17, 303–322.

    Article  Google Scholar 

  • Larson, K. C., & Whitham, T. G. (1991). Manipulation of food resources by a gall-forming aphid: The physiology of sink-source interactions. Oecologia, 88(1), 15–21.

    Article  Google Scholar 

  • Lefebvre, L., & Boogert, N. J. (2010). Avian social learning. In J. C. Choe (Ed.), Encyclopedia of animal behavior (Vol. 3, 2nd ed., pp. 334–340). Elsevier.

    Chapter  Google Scholar 

  • Magnani, L. (2009). Adaptive cognition. The epistemological and eco-cognitive dimensions of hypothetical reasoning (Cognitive systems monographs) (Vol. 3). Springer.

    Book  Google Scholar 

  • Maran, T. (2008). Mimikri semiootika. [Semiotics of mimicry]. Tartu Ăślikooli doktoritöid. Tartu: Tartu University Press.

    Google Scholar 

  • Maran, T., & Kleisner, K. (2010). Towards an evolutionary biosemiotics: Semiotic selection and semiotic cooption. Biosemiotics, 3(2), 189–200.

    Article  Google Scholar 

  • Margueron, R., Justin, N., Ohno, K., Sharpe, M. L., Son, J., Drury, W. J., 3rd, et al. (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature, 461(7265), 762–767.

    Article  Google Scholar 

  • Massingham, T., Davies, L. J., & Lio, P. (2001). Analysing gene function after duplication. BioEssays, 23, 873–876.

    Article  Google Scholar 

  • Mayr, E., & Provine, W. B. (1980). The evolutionary synthesis: Perspectives on the unification of biology. Harvard University Press.

    Book  Google Scholar 

  • McHenry, H. M. (1975). Fossil hominid body weight and brain size. Nature, 254(5502), 686–688.

    Article  Google Scholar 

  • Meyen, S. V. (1973). Plant morphology in its nomothetical aspects. Botanical Review, 39, 205–260.

    Article  Google Scholar 

  • Nee, D. E., & D’Esposito, M. (2016). The representational basis of working memory. In R. E. Clark & S. Martin (Eds.), Behavioral neuroscience of learning and memory (Current topics in behavioral neurosciences) (Vol. 37, pp. 213–230). Springer.

    Chapter  Google Scholar 

  • Norman, J. (1988). Chinese. Cambridge University Press.

    Google Scholar 

  • Odling-Smee, F. J. (1988). Niche constructing phenotypes. In H. C. Plotkin (Ed.), The role of behavior in evolution (pp. 31–79). MIT Press.

    Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction. The neglected process in evolution (Monographs in population biology) (Vol. 37). Princeton University Press.

    Google Scholar 

  • Palmer, A. R. (2004). Symmetry breaking and the evolution of development. Science, 306, 828–833.

    Article  Google Scholar 

  • Patrushev, L. I., & Minkevich, I. G. (2008). The problem of the eukaryotic genome size. Biochemistry (Moscow), 73(13), 1519–1552.

    Article  Google Scholar 

  • Patthy, L. (1999). Genome evolution and the evolution of exon-shuffling-a review. Gene, 238, 103–114.

    Article  Google Scholar 

  • Peirce, C. S. (1931–1958). Collected papers (Hartshorne & Weiss; Burks, Eds.) (Vol. 1–8). Thoemmes Press.

    Google Scholar 

  • Perlovsky, L. (2007). Neural dynamic logic of consciousness: The knowledge instinct. In L. I. Perlovsky & R. Kozma (Eds.), Neurodynamics of cognition and consciousness. Understanding complex systems (pp. 73–108). Springer.

    Google Scholar 

  • Perlovsky, L. (2016). Physics of the mind. Frontiers in Systems Neuroscience, 10(84), 1–12.

    Google Scholar 

  • Pigliucci, M. (2008). What, if anything, is an evolutionary novelty? Philosophy of Science, 75, 887–898.

    Article  Google Scholar 

  • Pigliucci, M., & MĂĽller, G. B. (Eds.). (2010). Evolution – The extended synthesis. MIT Press.

    Google Scholar 

  • Porter, S. L., Wadhams, G. H., & Armitage, J. P. (2011). Signal processing in complex chemotaxis pathways. Nature Reviews Microbiology, 9(3), 153–165.

    Article  Google Scholar 

  • Price, G. R. (1970). Selection and covariance. Nature, 227(5257), 520–521.

    Article  Google Scholar 

  • Price, G. R. (1972). Extension of covariance selection mathematics. Annals of Human Genetics, 35(4), 485–490.

    Article  Google Scholar 

  • Raup, D. M. (1966). Geometric analysis of shell coiling: General problems. Journal of Paleontology, 40, 1178–1190.

    Google Scholar 

  • Roote, J., & Prokop, A. (2013). How to design a genetic mating scheme: A basic training package for drosophila genetics. G3: Genes Genomes Genetics, 3, 353–358.

    Article  Google Scholar 

  • Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9(5), 250–257.

    Article  Google Scholar 

  • Sainsbury, R. M. (2009). Paradoxes (3rd ed.). Cambridge University Press.

    Book  Google Scholar 

  • Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V., & Reinberg, D. (2008). Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Moecular Cell Biology, 28(8), 2718–2731.

    Google Scholar 

  • Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Blakiston.

    Google Scholar 

  • Sebeok, T. A., & Danesi, M. (2000). The forms of meaning. Modeling systems theory and semiotic analysis. Mouton de Gruyter.

    Book  Google Scholar 

  • Sharov, A. A. (2006). Genome increase as a clock for the origin and evolution of life. Biology Direct, 1, 17.

    Article  Google Scholar 

  • Sharov, A. A. (2014). Evolutionary constraints or opportunities? Biosystems, 123, 9–18.

    Article  Google Scholar 

  • Sharov, A. A. (2016a). Evolution of natural agents: Preservation, advance, and emergence of functional information. Biosemiotics, 9(1), 103–120.

    Article  Google Scholar 

  • Sharov, A. A. (2016b). Evolutionary biosemiotics and multilevel construction networks. Biosemiotics, 9(3), 399–416.

    Article  Google Scholar 

  • Sharov, A. A. (2017). Molecular biocommunication. In R. Gordon & J. Seckbach (Eds.), Biocommunication. Sign-mediated interactions between cells and organisms (pp. 3–35). World Scientific.

    Chapter  Google Scholar 

  • Sharov, A. A., & Gordon, R. (2013). Life before earth. Arxiv. http://arxiv.org/ftp/arxiv/papers/1304/1304.3381.pdf

    Google Scholar 

  • Sharov, A. A., & Gordon, R. (2018). Life before Earth. In R. Gordon & A. A. Sharov (Eds.), Habitability of the Universe before Earth (pp. 267–298). Elsevier, Academic Press.

    Google Scholar 

  • Sharov, A. A., Maran, T., & Tønnessen, M. (2015). Organisms reshape sign relations. Biosemiotics, 8(3), 361–365.

    Article  Google Scholar 

  • Shultz, S., Nelson, E., & Dunbar, R. I. (2012). Hominin cognitive evolution: Identifying patterns and processes in the fossil and archaeological record. Philosophical Transactions of the Royal Society B Biological Sciences, 367(1599), 2130–2140.

    Article  Google Scholar 

  • Shvanvich, B. N. (1949). Course of general entomology. Sovetskaja Nauka.

    Google Scholar 

  • Snodgrass, R. E. (2018 [1935]). Principles of insect morphology. Cornell University Press.

    Google Scholar 

  • Starr, T. K., Jameson, S. C., & Hogquist, K. A. (2003). Positive and negative selection of T cells. Annual Review of Immunology, 21, 139–176.

    Article  Google Scholar 

  • Stone, G. N., & Schönrogge, K. (2003). The adaptive significance of insect gall morphology. Trends in Ecology and Evolution, 18(10), 512–522.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). The MIT Press.

    Google Scholar 

  • Tønnessen, M. (2012). Semiogenesis. In D. Favareau, P. Cobley, & K. Kull (Eds.), A more developed sign. Interpreting the work of Jesper Hoffmeyer (pp. 247–249). Tartu University Press.

    Google Scholar 

  • Tønnessen, M. (2018). The search image as a link between sensation, perception and action. Biosystems, 164, 138–146.

    Article  Google Scholar 

  • True, J. R. (2003). Insect melanism: The molecules matter. Trends in Ecology and Evolution, 18(12), 640–647.

    Article  Google Scholar 

  • Turner, C. K. (2017). Principle of intentionality. Frontiers in Psychology, 8(137), 1–10.

    Google Scholar 

  • Van’t Hof, A. E., Campagne, P., Rigden, D. J., Yung, C. J., Lingley, J., Quail, M. A., et al. (2016). The industrial melanism mutation in British peppered moths is a transposable element. Nature, 534(7605), 102–105.

    Article  Google Scholar 

  • Vant Hof, A. E., & Saccheri, I. J. (2010). Industrial melanism in the peppered moth is not associated with genetic variation in canonical melanisation gene candidates. PLoS One, 5(5), e10889.

    Article  Google Scholar 

  • van Hateren, J. H. (2015). The natural emergence of (bio)semiosic phenomena. Biosemiotics, 8(3), 403–419.

    Article  Google Scholar 

  • Vavilov, N. I. (1922). The law of homologous series in variation. Journal of Genetics, 12, 47–89.

    Article  Google Scholar 

  • von Neumann, J. (1966). Theory of self-reproducing automata. University of Illinois Press.

    Google Scholar 

  • von UexkĂĽll, J. (1926). Theoretical biology. Harcourt, Brace & Co..

    Google Scholar 

  • von UexkĂĽll, J. (1928). Theoretische Biologie (2nd ed.). Verlag von Julius Springer.

    Book  Google Scholar 

  • von UexkĂĽll, J. (1957). A stroll through the worlds of animals and men: A picture book of invisible worlds. In C. H. Schiller (Ed.), Instinctive behaviour: The development of a modern concept (pp. 5–80). International Universities Press.

    Google Scholar 

  • Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7(2), 118–126.

    Article  Google Scholar 

  • Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. Allen & Unwin.

    Google Scholar 

  • Wagner, A. (2011). The molecular origins of evolutionary innovations. Trends in Genetics, 27(10), 397–410.

    Article  Google Scholar 

  • Wagner, A. (2014). Arrival of the fittest. Solving evolution’s greatest puzzle. Penguin.

    Google Scholar 

  • Weber, A. (2011). The book of desire: Toward a biological poetics. Biosemiotics, 4(2), 149–170.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.

    Book  Google Scholar 

  • West-Eberhard, M. J. (2005). Phenotypic accommodation: Adaptive innovation due to developmental plasticity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304(6), 610–618.

    Article  Google Scholar 

  • Wright, G. D. (2010). Antibiotic resistance in the environment: A link to the clinic? Current Opinion in Microbiology, 13(5), 589–594.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharov, A., Tønnessen, M. (2021). Semiogenesis. In: Semiotic Agency. Biosemiotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-89484-9_8

Download citation

Publish with us

Policies and ethics