Skip to main content

Blood-Arachnoid Barrier as a Dynamic Physiological and Pharmacological Interface Between Cerebrospinal Fluid and Blood

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 33))

Abstract

The blood-arachnoid barrier (BAB) consists of arachnoid epithelial cells linked by tight junctions, and forms one of the interfaces between blood and cerebrospinal fluid (CSF). The BAB was long believed to be impermeable to water-soluble substances and to play a largely passive role until our in vivo studies demonstrated that it is an active interface. Our quantitative proteomic analyses revealed that multiple transporters (OAT1, OAT3, P-gp, BCRP, MATE1, OCT2, PEPT2, etc.) are expressed more abundantly at the BAB than at the blood-cerebrospinal fluid barrier, their membrane localizations are polarized in the BAB, and there are regional differences between the cerebral and spinal cord BAB. These findings would provide a better understanding about the central nervous system kinetics of drugs and endogenous compounds, which cannot be explained by blood-brain and blood-cerebrospinal fluid barriers. Here, we introduce the BAB transport systems and discuss the physiologically and pharmacologically crucial roles of the BAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAB:

Blood-arachnoid barrier

BBB:

Blood-brain barrier

BCSFB:

Blood-cerebrospinal fluid barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

qTAP:

Quantitative targeted absolute proteomics

References

  • Asaba H, Hosoya K, Takanaga H, Ohtsuki S, Tamura E, Takizawa T, Terasaki T (2000) Blood-brain barrier is involved in the efflux transport of a neuroactive steroid, dehydroepiandrosterone sulfate, via organic anion transporting polypeptide 2. J Neurochem 75:1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V, Jayant RD (2019) In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther 13:3591–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey J, Thew M, Balls M (2013) An analysis of the use of dogs in predicting human toxicology and drug safety. Altern Lab Anim 41:335–350

    Article  CAS  PubMed  Google Scholar 

  • Bowman GL, Shannon J, Frei B, Kaye JA, Quinn JF (2010) Uric acid as a CNS antioxidant. J Alzheimers Dis 19:1331–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun C, Sakamoto A, Fuchs H, Ishiguro N, Suzuki S, Cui Y, Klinder K, Watanabe M, Terasaki T, Sauer A (2017) Quantification of transporter and receptor proteins in dog brain capillaries and choroid plexus: relevance for the distribution in brain and CSF of selected BCRP and P-gp substrates. Mol Pharm 14:3436–3447

    Article  CAS  PubMed  Google Scholar 

  • Degrell I, Nagy E (1990) Concentration gradients for HVA, 5-HIAA, ascorbic acid, and uric acid in cerebrospinal fluid. Biol Psychiatry 27:891–896

    Article  CAS  PubMed  Google Scholar 

  • Deguchi T, Isozaki K, Yousuke K, Terasaki T, Otagiri M (2006) Involvement of organic anion transporters in the efflux of uremic toxins across the blood-brain barrier. J Neurochem 96:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Friden M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M (2009) Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52:6233–6243

    Article  CAS  PubMed  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(O111):016717

    PubMed  Google Scholar 

  • Guldberg HC, Ashcroft GW, Crawford TB (1966) Concentrations of 5-hydroxyindolylacetic acid and homovanillic acid in the cerebrospinal fluid of the dog before and during treatment with probenecid. Life Sci 5:1571–1575

    Article  CAS  PubMed  Google Scholar 

  • Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T (2013) Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 102:3343–3355

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J, Terasaki T (2011) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100:3939–3950

    Article  CAS  PubMed  Google Scholar 

  • Kaddoumi A, Choi SU, Kinman L, Whittington D, Tsai CC, Ho RJ, Anderson BD, Unadkat JD (2007) Inhibition of P-glycoprotein activity at the primate blood-brain barrier increases the distribution of nelfinavir into the brain but not into the cerebrospinal fluid. Drug Metab Dispos 35:1459–1462

    Article  CAS  PubMed  Google Scholar 

  • Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, Sekine Y, Uchida Y, Ito S, Terasaki T (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 25:1469–1483

    Article  CAS  PubMed  Google Scholar 

  • Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y (2011) Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J Pharmacol Exp Ther 339:935–944

    Article  CAS  PubMed  Google Scholar 

  • Konig J, Zolk O, Singer K, Hoffmann C, Fromm MF (2011) Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol 163:546–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo Y, Ohtsuki S, Uchida Y, Terasaki T (2015) Quantitative determination of luminal and abluminal membrane distributions of transporters in porcine brain capillaries by plasma membrane fractionation and quantitative targeted proteomics. J Pharm Sci 104:3060–3068

    Article  CAS  PubMed  Google Scholar 

  • Labuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopien B (2010) Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 62:956–965

    Article  CAS  PubMed  Google Scholar 

  • Moir AT, Ashcroft GW, Crawford TB, Eccleston D, Guldberg HC (1970) Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain 93:357–368

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Takanaga H, Ohtsuki S, Deguchi T, Kang YS, Hosoya K, Terasaki T (2003) Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab 23:432–440

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima S, Reese TS, Landis DM, Brightman MW (1975) Junctions in the meninges and marginal glia. J Comp Neurol 164:127–169

    Article  CAS  PubMed  Google Scholar 

  • Nagaya Y, Nozaki Y, Kobayashi K, Takenaka O, Nakatani Y, Kusano K, Yoshimura T, Kusuhara H (2014) Utility of cerebrospinal fluid drug concentration as a surrogate for unbound brain concentration in nonhuman primates. Drug Metab Pharmacokinet 29:419–426

    Article  PubMed  CAS  Google Scholar 

  • Ocheltree SM, Shen H, Hu Y, Xiang J, Keep RF, Smith DE (2004) Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice. Pharm Res 21:1680–1685

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki S, Ito S, Matsuda A, Hori S, Abe T, Terasaki T (2007) Brain-to-blood elimination of 24S-hydroxycholesterol from rat brain is mediated by organic anion transporting polypeptide 2 (oatp2) at the blood-brain barrier. J Neurochem 103:1430–1438

    Article  CAS  PubMed  Google Scholar 

  • Ose A, Kusuhara H, Endo C, Tohyama K, Miyajima M, Kitamura S, Sugiyama Y (2010) Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metab Dispos 38:168–176

    Article  CAS  PubMed  Google Scholar 

  • Patabendige A, Skinner RA, Morgan L, Abbott NJ (2013) A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res 1521:16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Carcaboso AM, Hubbard KE, Tagen M, Wynn HG, Panetta JC, Waters CM, Elmeliegy MA, Stewart CF (2009) Compartment-specific roles of ATP-binding cassette transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid. Cancer Res 69:5885–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Nelson DM, Oliveira RV, Zhang Y, McNaney CA, Gu X, Chen W, Su C, Reily MD, Shipkova PA, Gan J, Lai Y, Marathe P, Humphreys WG (2018) Discovery and validation of pyridoxic acid and homovanillic acid as novel endogenous plasma biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in cynomolgus monkeys. Drug Metab Dispos 46:178–188

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Johanson CE (1989) The mammalian choroid plexus. Sci Am 261:68–74

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Sawada Y, Sugiyama Y, Iga T, Hanano M (1985) Saturable transport of cimetidine from cerebrospinal fluid to blood in rats. J Pharmacobiodyn 8:73–76

    Article  CAS  PubMed  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK (2002) Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem 277:26934–26943

    Article  CAS  PubMed  Google Scholar 

  • Tachikawa M, Kasai Y, Takahashi M, Fujinawa J, Kitaichi K, Terasaki T, Hosoya K (2008) The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process. J Neurochem 107:432–442

    Article  CAS  PubMed  Google Scholar 

  • Tachikawa M, Uchida Y, Ohtsuki S, Terasaki T (2014) Recent progress in blood–brain barrier and blood–CSF barrier transport research: pharmaceutical relevance for drug delivery to the brain. In: Hammarlund-Udenaes M, de Lange EC, Thorne RG (eds) Drug delivery to the brain – physiological concepts, methodologies and approaches. Springer, New York, pp 23–62

    Chapter  Google Scholar 

  • Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol 74:359–371

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Masuda S, Asaka J, Tsuda M, Katsura T, Inui K (2006) Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm Res 23:1696–1701

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG (2014) Appendix: primer on central nervous system structure/function and the vasculature, ventricular system, and fluids of the brain. In: Hammarlund-Udenaes M, de Lange EC, Thorne RG (eds) Drug delivery to the brain – physiological concepts, methodologies and approaches. Springer, New York, pp 685–707

    Google Scholar 

  • Uchida Y, Ohtsuki S, Kamiie J, Terasaki T (2011a) Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther 339:579–588

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011b) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Terasaki T (2014a) Pharmacoproteomics-based reconstruction of in vivo P-glycoprotein function at blood-brain barrier and brain distribution of substrate verapamil in pentylenetetrazole-kindled epilepsy, spontaneous epilepsy, and phenytoin treatment models. Drug Metab Dispos 42:1719–1726

    Article  PubMed  CAS  Google Scholar 

  • Uchida Y, Wakayama K, Ohtsuki S, Chiba M, Ohe T, Ishii Y, Terasaki T (2014b) Blood-brain barrier pharmacoproteomics-based reconstruction of the in vivo brain distribution of P-glycoprotein substrates in cynomolgus monkeys. J Pharmacol Exp Ther 350:578–588

    Article  PubMed  CAS  Google Scholar 

  • Uchida Y, Zhang Z, Tachikawa M, Terasaki T (2015) Quantitative targeted absolute proteomics of rat blood-cerebrospinal fluid barrier transporters: comparison with a human specimen. J Neurochem 134:1104–1115

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Sumiya T, Tachikawa M, Yamakawa T, Murata S, Yagi Y, Sato K, Stephan A, Ito K, Ohtsuki S, Couraud PO, Suzuki T, Terasaki T (2019) Involvement of Claudin-11 in disruption of blood-brain, -spinal cord, and -arachnoid barriers in multiple sclerosis. Mol Neurobiol 56:2039–2056

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Goto R, Takeuchi H, Łuczak M, Usui T, Tachikawa M, Terasaki T (2020) Abundant expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1 and xCT transporters in blood-arachnoid barrier of pig, and polarized localizations at CSF- and blood-facing plasma membranes. Drug Metab Dispos. Epub ahead of print

    Google Scholar 

  • van de Wetering K, Zelcer N, Kuil A, Feddema W, Hillebrand M, Vlaming ML, Schinkel AH, Beijnen JH, Borst P (2007) Multidrug resistance proteins 2 and 3 provide alternative routes for hepatic excretion of morphine-glucuronides. Mol Pharmacol 72:387–394

    Article  PubMed  CAS  Google Scholar 

  • Walters EM, Agca Y, Ganjam V, Evans T (2011) Animal models got you puzzled?: think pig. Ann N Y Acad Sci 1245:63–64

    Article  PubMed  Google Scholar 

  • Williams AC, Ramsden DB (2005) Autotoxicity, methylation and a road to the prevention of Parkinson's disease. J Clin Neurosci 12:6–11

    Article  CAS  PubMed  Google Scholar 

  • Wolman AT, Gionfriddo MR, Heindel GA, Mukhija P, Witkowski S, Bommareddy A, Vanwert AL (2013) Organic anion transporter 3 interacts selectively with lipophilic beta-lactam antibiotics. Drug Metab Dispos 41:791–800

    Article  CAS  PubMed  Google Scholar 

  • Yaguchi Y, Tachikawa M, Zhang Z, Terasaki T (2019) Organic anion-transporting polypeptide 1a4 (Oatp1a4/Slco1a4) at the blood-arachnoid barrier is the major pathway of sulforhodamine-101 clearance from cerebrospinal fluid of rats. Mol Pharm 16:2021–2027

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Danhof M, de Lange ECM (2017) Microdialysis: the key to physiologically based model prediction of human CNS target site concentrations. AAPS J 19:891–909

    Article  PubMed  Google Scholar 

  • Yasuda K, Cline C, Vogel P, Onciu M, Fatima S, Sorrentino BP, Thirumaran RK, Ekins S, Urade Y, Fujimori K, Schuetz EG (2013) Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab Dispos 41:923–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Uchida Y, Hirano S, Ando D, Kubo Y, Auriola S, Akanuma SI, Hosoya KI, Urtti A, Terasaki T, Tachikawa M (2017) Inner blood-retinal barrier dominantly expresses breast cancer resistance protein: comparative quantitative targeted absolute proteomics study of CNS barriers in pig. Mol Pharm 14:3729–3738

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tachikawa M, Uchida Y, Terasaki T (2018) Drug clearance from cerebrospinal fluid mediated by organic anion transporters 1 (Slc22a6) and 3 (Slc22a8) at arachnoid membrane of rats. Mol Pharm 15:911–922

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The studies mentioned in this chapter were supported in part by Grants-in-Aids from the Japanese Society for the Promotion of Science (JSPS) for Young Scientists (A) [KAKENHI: 16H06218], Scientific Research (B) [KAKENHI: 17H04004], Bilateral Open Partnership Joint Research Program (between Finland and Japan), Fostering Joint International Research (A) [KAKENHI: 18KK0446], and Early-Career Scientists [KAKENHI: 19 K16438]. This study was also supported in part by Grants-in-Aids from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for Scientific Research on Innovative Areas [KAKENHI: 18H04534] and from Mochida Memorial Foundation for Medical and Pharmaceutical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Uchida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uchida, Y., Goto, R., Usui, T., Tachikawa, M., Terasaki, T. (2022). Blood-Arachnoid Barrier as a Dynamic Physiological and Pharmacological Interface Between Cerebrospinal Fluid and Blood. In: de Lange, E.C., Hammarlund-Udenaes, M., Thorne, R.G. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-88773-5_4

Download citation

Publish with us

Policies and ethics