Skip to main content

Extension of the Genomic Conceptual Model to Integrate Genome-Wide Association Studies

  • Conference paper
  • First Online:
Advances in Conceptual Modeling (ER 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13012))

Included in the following conference series:

Abstract

The first human genome has been sequenced at the turn of the year 2000. Since then, modern biology has made great progresses, also thanks to the introduction of Next-generation sequencing in the mid-2000s. The growing availability of genomic data led to the birth of tertiary analysis, concerning sense-making and extraction of useful biological information. To deal with data heterogeneity, in the last decade many tools have been introduced to achieve genomic data integration: among them, the Genomic Conceptual Model (GCM) and the META-BASE architecture. The latter one allows to map data from many projects into the GCM through an integration pipeline.

In this work, we proposed an extension of the GCM to integrate two additional sources into the META-BASE architecture, namely: GWAS Catalog (curated by the NHGRI and EBI institutes) and FinnGen (curated by the University of Helsinki). These two sources host Genome-Wide Association Studies (GWAS), useful for explaining the connection between genome variations of single nucleotides and particular traits. They are organized according to different data models but share the same data semantics. As a result of our integration efforts, we enable the interoperable use and querying of GWAS datasets with several other genomic datasets (including TCGA, ENCODE, Roadmap Epigenomics, 1000 Genomes Project, and GENCODE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernasconi, A., Canakoglu, A., Masseroli, M., Ceri, S.: The road towards data integration in human genomics: players, steps and interactions. Briefings Bioinform. 22(1), 30–44 (2021). https://doi.org/10.1093/bib/bbaa080

  2. Bernasconi, A., et al.: META-BASE: a novel architecture for large-scale genomic metadata integration. IEEE/ACM Trans. Comput. Biol. Bioinform. (2020). https://doi.org/10.1109/TCBB.2020.2998954

  3. Bernasconi, A., Ceri, S., Campi, A., Masseroli, M.: Conceptual modeling for genomics: building an integrated repository of open data. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 325–339. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2_26

    Chapter  Google Scholar 

  4. Bernasconi, A., Canakoglu, A., Colombo, A., Ceri, S.: Ontology-driven metadata enrichment for genomic datasets. In: 11th International Conference Semantic Web Applications and Tools for Life Sciences, SWAT4LS 2018, vol. 2275, pp. 1–10 (2018). CEUR-WS

    Google Scholar 

  5. Buniello, A., et al.: The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47(D1), D1005–D1012 (2019)

    Article  Google Scholar 

  6. Canakoglu, A., Bernasconi, A., Colombo, A., Masseroli, M., Ceri, S.: GenoSurf: metadata driven semantic search system for integrated genomic datasets. Database 2019, baz132 (2019). https://doi.org/10.1093/database/baz132

  7. Cappelli, E., et al.: OpenGDC: Unifying, Modeling, Integrating cancer genomic data and clinical metadata. Appl. Sci. 10(18), 6367 (2020)

    Google Scholar 

  8. Rambold, G., et al.: Meta-omics data and collection objects (MOD-CO): a conceptual schema and data model for processing sample data in meta-omics research. Database 2019, baz002 (2019). https://doi.org/10.1093/database/baz002

  9. Frankish, A., et al.: GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47(D1), D766–D773 (2019)

    Article  Google Scholar 

  10. GWAS Catalog Team: GWAS catalog website. https://www.ebi.ac.uk/gwas/

  11. International Multiple Sclerosis Genetics Consortium: Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365(6460), eaav7188 (2019)

    Google Scholar 

  12. Kundaje, A., et al.: Integrative analysis of 111 reference human epigenomes. Nature 518(7539), 317–330 (2015)

    Article  Google Scholar 

  13. Masseroli, M., et al.: Modeling and interoperability of heterogeneous genomic big data for integrative processing and querying. Methods 111, 3–11 (2016)

    Article  Google Scholar 

  14. Masseroli, M., et al.: GenoMetric Query Language: a novel approach to large-scale genomic data management. Bioinformatics 31(12), 1881–1888 (2015)

    Article  Google Scholar 

  15. Masseroli, M., et al.: Processing of big heterogeneous genomic datasets for tertiary analysis of Next Generation Sequencing data. Bioinform. 35(5), 729–736 (2019). https://doi.org/10.1093/bioinformatics/bty688

  16. Palacio, A.L., López, Ó.P., Ródenas, J.C.C.: A method to identify relevant genome data: conceptual modeling for the medicine of precision. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 597–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_44

    Chapter  Google Scholar 

  17. Pastor, O.: Understanding the human genome: a conceptual modeling-based approach. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6261, pp. 467–469. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15364-8_38

    Chapter  Google Scholar 

  18. Pastor, O., et al.: Enforcing conceptual modeling to improve the understanding of human genome. In: 2010 Fourth International Conference on Research Challenges in Information Science, pp. 85–92. IEEE (2010)

    Google Scholar 

  19. Rambold, G., et al.: Meta-omics data and collection objects (MOD-CO): a conceptual schema and data model for processing sample data in meta-omics research. Database (2019)

    Google Scholar 

  20. Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31

    Chapter  Google Scholar 

  21. Rudy, G., Helix, G.: A hitchhiker’s guide to next-generation sequencing (2010). http://www.goldenhelix.com/pdfs/whitepapers/Hitchhikers-Guide-to-NGS.pdf

  22. Schuster, S.C.: Next-generation sequencing transforms today’s biology. Nat. Methods 5(1), 16–18 (2008)

    Article  MathSciNet  Google Scholar 

  23. Tam, V., et al.: Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019)

    Article  Google Scholar 

  24. The 1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

    Google Scholar 

  25. The ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57–74 (2012)

    Article  Google Scholar 

  26. Wang, K., et al.: A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr. Res. 124(1), 192–199 (2010)

    Article  Google Scholar 

  27. Wang, L., et al.: Biostar models of clinical and genomic data for biomedical data warehouse design. Int. J. Bioinform. Res. Appl. 1(1), 63–80 (2005)

    Article  Google Scholar 

  28. Weinstein, J.N., et al.: The cancer genome atlas Pan-Cancer analysis project. Nat. Genet. 45(10), 1113–1120 (2013)

    Article  Google Scholar 

  29. Zheng, R., et al.: Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 47(D1), D729–D735 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the ERC Advanced Grant 693174 GeCo (data-driven Genomic Computing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Comolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Comolli, F. (2021). Extension of the Genomic Conceptual Model to Integrate Genome-Wide Association Studies. In: Reinhartz-Berger, I., Sadiq, S. (eds) Advances in Conceptual Modeling. ER 2021. Lecture Notes in Computer Science(), vol 13012. Springer, Cham. https://doi.org/10.1007/978-3-030-88358-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88358-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88357-7

  • Online ISBN: 978-3-030-88358-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics