Skip to main content

Compound Figure Separation of Biomedical Images with Side Loss

  • Conference paper
  • First Online:
Deep Generative Models, and Data Augmentation, Labelling, and Imperfections (DGM4MICCAI 2021, DALI 2021)

Abstract

Unsupervised learning algorithms (e.g., self-supervised learning, auto-encoder, contrastive learning) allow deep learning models to learn effective image representations from large-scale unlabeled data. In medical image analysis, even unannotated data can be difficult to obtain for individual labs. Fortunately, national-level efforts have been made to provide efficient access to obtain biomedical image data from previous scientific publications. For instance, NIH has launched the Open-i\(^\circledR \) search engine that provides a large-scale image database with free access. However, the images in scientific publications consist of a considerable amount of compound figures with subplots. To extract and curate individual subplots, many different compound figure separation approaches have been developed, especially with the recent advances in deep learning. However, previous approaches typically required resource extensive bounding box annotation to train detection models. In this paper, we propose a simple compound figure separation (SimCFS) framework that uses weak classification annotations from individual images. Our technical contribution is three-fold: (1) we introduce a new side loss that is designed for compound figure separation; (2) we introduce an intra-class image augmentation method to simulate hard cases; (3) the proposed framework enables an efficient deployment to new classes of images, without requiring resource extensive bounding box annotations. From the results, the SimCFS achieved a new state-of-the-art performance on the ImageCLEF 2016 Compound Figure Separation Database. The source code of SimCFS is made publicly available at https://github.com/hrlblab/ImageSeperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ultralytics/yolov5.

References

  1. Apostolova, E., You, D., Xue, Z., Antani, S., Demner-Fushman, D., Thoma, G.R.: Image retrieval from scientific publications: text and image content processing to separate multipanel figures. J. Am. Soc. Inform. Sci. Technol. 64(5), 893–908 (2013)

    Article  Google Scholar 

  2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  3. Bueno, G., Fernandez-Carrobles, M.M., Gonzalez-Lopez, L., Deniz, O.: Glomerulosclerosis identification in whole slide images using semantic segmentation. Comput. Methods Programs Biomed. 184, 105273 (2020)

    Article  Google Scholar 

  4. Celebi, M.E., Aydin, K.: Unsupervised Learning Algorithms. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24211-8

    Book  Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Davila, K., Setlur, S., Doermann, D., Bhargava, U.K., Govindaraju, V.: Chart mining: a survey of methods for automated chart analysis. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  7. Demner-Fushman, D., Antani, S., Simpson, M., Thoma, G.R.: Design and development of a multimodal biomedical information retrieval system. J. Comput. Sci. Eng. 6(2), 168–177 (2012)

    Article  Google Scholar 

  8. Gadermayr, M., Dombrowski, A.K., Klinkhammer, B.M., Boor, P., Merhof, D.: CNN cascades for segmenting whole slide images of the kidney. arXiv preprint arXiv:1708.00251 (2017)

  9. Ginley, B., et al.: Computational segmentation and classification of diabetic glomerulosclerosis. J. Am. Soc. Nephrol. 30(10), 1953–1967 (2019)

    Article  Google Scholar 

  10. Govind, D., Ginley, B., Lutnick, B., Tomaszewski, J.E., Sarder, P.: Glomerular detection and segmentation from multimodal microscopy images using a butterworth band-pass filter. In: Medical Imaging 2018: Digital Pathology, vol. 10581, p. 1058114. International Society for Optics and Photonics (2018)

    Google Scholar 

  11. García Seco de Herrera, A., Schaer, R., Bromuri, S., Müller, H.: Overview of the ImageCLEF 2016 medical task. In: Working Notes of CLEF 2016 (Cross Language Evaluation Forum), September 2016

    Google Scholar 

  12. Huang, W., Tan, C.L., Leow, W.K.: Associating text and graphics for scientific chart understanding. In: Eighth International Conference on Document Analysis and Recognition (ICDAR 2005), pp. 580–584. IEEE (2005)

    Google Scholar 

  13. Huo, Y., Deng, R., Liu, Q., Fogo, A.B., Yang, H.: AI applications in renal pathology. Kidney Int. 99, 1309–1320 (2021)

    Article  Google Scholar 

  14. Jiang, W., Schwenker, E., Spreadbury, T., Ferrier, N., Chan, M.K., Cossairt, O.: A two-stage framework for compound figure separation. arXiv preprint arXiv:2101.09903 (2021)

  15. Kalpathy-Cramer, J., de Herrera, A.G.S., Demner-Fushman, D., Antani, S., Bedrick, S., Müller, H.: Evaluating performance of biomedical image retrieval systems–an overview of the medical image retrieval task at ImageCLEF 2004–2013. Comput. Med. Imaging Graph. 39, 55–61 (2015)

    Article  Google Scholar 

  16. Kannan, S., et al.: Segmentation of glomeruli within trichrome images using deep learning. Kidney Int. Rep. 4(7), 955–962 (2019)

    Article  Google Scholar 

  17. Koziell, A., et al.: Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum. Mol. Genet. 11(4), 379–388 (2002)

    Article  Google Scholar 

  18. Lee, P.-S., Howe, B.: Detecting and dismantling composite visualizations in the scientific literature. In: Fred, A., De Marsico, M., Figueiredo, M. (eds.) ICPRAM 2015. LNCS, vol. 9493, pp. 247–266. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27677-9_16

    Chapter  Google Scholar 

  19. Lee, P.S., Howe, B.: Dismantling composite visualizations in the scientific literature. In: ICPRAM (2), pp. 79–91. Citeseer (2015)

    Google Scholar 

  20. Li, P., Jiang, X., Kambhamettu, C., Shatkay, H.: Compound image segmentation of published biomedical figures. Bioinformatics 34(7), 1192–1199 (2017). https://doi.org/10.1093/bioinformatics/btx611

    Article  Google Scholar 

  21. Li, P., Jiang, X., Kambhamettu, C., Shatkay, H.: Segmenting compound biomedical figures into their constituent panels. In: Jones, G.J.F., et al. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 199–210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1_20

    Chapter  Google Scholar 

  22. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  23. Sathya, R., Abraham, A.: Comparison of supervised and unsupervised learning algorithms for pattern classification. Int. J. Adv. Res. Artif. Intell. 2(2), 34–38 (2013)

    Article  Google Scholar 

  24. Shi, X., Wu, Y., Cao, H., Burns, G., Natarajan, P.: Layout-aware subfigure decomposition for complex figures in the biomedical literature. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2019, pp. 1343–1347. IEEE (2019)

    Google Scholar 

  25. Tsutsui, S., Crandall, D.J.: A data driven approach for compound figure separation using convolutional neural networks. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 533–540. IEEE (2017)

    Google Scholar 

  26. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

  27. Zou, J., Thoma, G., Antani, S.: Unified deep neural network for segmentation and labeling of multipanel biomedical figures. J. Am. Soc. Inf. Sci. 71(11), 1327–1340 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuankai Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, T. et al. (2021). Compound Figure Separation of Biomedical Images with Side Loss. In: Engelhardt, S., et al. Deep Generative Models, and Data Augmentation, Labelling, and Imperfections. DGM4MICCAI DALI 2021 2021. Lecture Notes in Computer Science(), vol 13003. Springer, Cham. https://doi.org/10.1007/978-3-030-88210-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88210-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88209-9

  • Online ISBN: 978-3-030-88210-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics