Skip to main content

Biochar Produced from Organic Waste Digestate and Its Potential Utilization for Soil Remediation: An Overview

  • Chapter
  • First Online:
Renewable Energy Technologies for Energy Efficient Sustainable Development

Abstract

Contamination of metal(loid)s and organic pollutants in soils has caused detrimental effects to the environment, so that there is a need to develop appropriate treatment approaches to resolve the soil pollution. In recent years, biochar produced from biowaste material has been widely used as a potential adsorbent in remediating organic and inorganic pollutants in soils. This review aims to overview the production technologies and characterization of biochars derived from sewage sludge digestate (SSD) and the organic fraction of municipal solid waste digestate (OFMSWD) and their applications for soil treatment. Critical discussions on the sorption mechanism, important factors influencing contaminant retention in soils, bioavailability of trace elements with biochar addition, and potential effects of biochar application to soils are summarized. The interaction mechanisms involved between the SSD and OFMSWD-derived biochars and contaminants, the main factors influencing the biochars’ sorption efficiency and possible effects to the environment are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agegnehu G, Bass AM, Nelson PN, Bird MI (2016) Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci Total Environ 543:295–306

    Article  CAS  PubMed  Google Scholar 

  • Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101:72–78

    Article  CAS  Google Scholar 

  • Agrafioti E, Kalderis D, Diamadopoulos E (2014) Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manag 133:309–314

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–23

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L, Cossu R (2015) Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag 36:147–155

    Article  CAS  PubMed  Google Scholar 

  • Al Seadi T, Lukehurst CT (2012) Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy

    Google Scholar 

  • Antal MJ, Mochidzuki K, Paredes LS (2003) Flash carbonization of biomass. Ind Eng Chem Res 42:3690–3699

    Article  CAS  Google Scholar 

  • Arazo RO, Genuino DAD, de Luna MDG, Capareda SC (2017) Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor. Sustain Environ Res 27:7–14

    Article  CAS  Google Scholar 

  • Awasthi MK, Wang M, Chen H, Wang Q, Zhao J, Ren X, Li D, Awasthi SK, Shen F, Li R, Zhang Z (2016) Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresour Technol 224:428–438

    Article  PubMed  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Moreno-Jimenez E (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJC (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202

    Article  CAS  PubMed  Google Scholar 

  • Belcher CM, Masek O (2013) 16. Biochar and carbon sequestration. In: Belcher CM (ed) Fire phenomena and the earth system: an interdisciplinary guide to fire science. Wiley, Oxford

    Google Scholar 

  • Borchard N, Wolf A, Laabs V, Aeckersberg R, Scherer HW, Moeller A, Amelung W (2012) Physical activation of biochar and its meaning for soil fertility and nutrient leaching—a greenhouse experiment. Soil Use Manag 28:177–184

    Article  Google Scholar 

  • Campos P, De la Rosa JM (2020) Assessing the effects of biochar on the immobilization of trace elements and plant development in a naturally contaminated soil. Sustain 12:1–19

    Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889

    Article  CAS  PubMed  Google Scholar 

  • Cesaro A, Conte A, Belgiorno V, Siciliano A, Guida M (2019) The evolution of compost stability and maturity during the full-scale treatment of the organic fraction of municipal solid waste. J Environ Manag 232:264–270

    Article  CAS  Google Scholar 

  • Chen B, Zhou D (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143

    Article  CAS  PubMed  Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38:4649–4655

    Article  CAS  PubMed  Google Scholar 

  • Davidsson Å, Gruvberger C, Christensen TH, Hansen TL, Jansen JLC (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag 27:406–414

    Article  CAS  PubMed  Google Scholar 

  • de la Rosa JM, Paneque M, Miller AZ, Knicker H (2014) Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci Total Environ 499:175–184

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Tan H, Wang X, Yang F, Cao R, Wang Z, Ruan R (2017) Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char. Bioresour Technol 239:302–310

    Article  CAS  PubMed  Google Scholar 

  • Devi P, Saroha AK (2014) Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour Technol 169:525–531

    Article  CAS  PubMed  Google Scholar 

  • Devi P, Saroha AK (2016) Utilization of sludge based adsorbents for the removal of various pollutants: a review. Sci Total Environ 578:16–33

    Article  PubMed  Google Scholar 

  • Ding W, Dong X, Ime IM, Gao B, Ma LQ (2014) Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74

    Article  CAS  PubMed  Google Scholar 

  • Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana—A review. Renew Sustain Energy Rev 15:3539–3551

    Article  Google Scholar 

  • El Sawwaf M, Nazir AK (2012) The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand. J Adv Res 3:337–344

    Article  Google Scholar 

  • Fan S, Tang J, Wang Y, Li H, Zhang H, Tang J, Wang Z, Li X (2016) Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism. J Mol Liq 220:432–441

    Article  CAS  Google Scholar 

  • Ferreira CIA, Calisto V, Otero M, Nadais H, Esteves VI (2017) Removal of tricaine methanesulfonate from aquaculture wastewater by adsorption onto pyrolysed paper mill sludge. Chemosphere 168:139–146

    Article  CAS  PubMed  Google Scholar 

  • Florence TM, Morrison GM, Stauber JL (1992) Determination of trace element speciation and the role of speciation in aquatic toxicity. Sci Total Environ 125:1–13

    Article  CAS  PubMed  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Freda C, Cornacchia G, Romanelli A, Valerio V, Grieco M (2018) Sewage sludge gasification in a bench scale rotary kiln. Fuel 212:88–94

    Article  CAS  Google Scholar 

  • Gadepalle VP, Ouki SK, Van Herjwijen R, Hutchins T (2007) Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam 16:233–251

    Article  CAS  Google Scholar 

  • Garlapalli RK, Wirth B, Reza MT (2016) Pyrolysis of hydrochar from digestate: effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Bioresour Technol 220:168–174

    Article  CAS  PubMed  Google Scholar 

  • Gwenzi W, Muzava M, Mapanda F, Tauro TP (2016) Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe. J Integr Agric 15:1395–1406

    Article  CAS  Google Scholar 

  • He E, Yang Y, Xu Z, Qiu H, Yang F, Peijnenburg WJGM, Zhang W, Qiu R, Wang S (2019) Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars. Sci Total Environ 673:245–253

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Soriano MC, Kerré B, Kopittke PM, Horemans B, Smolders E (2016) Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study. Sci Rep 6:25127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MK, Strezov V, Yin Chan K, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Hossain MK, Strezov Vladimir V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92:223–228

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92:1450–1457

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Zhang B, Saad EM, Ingall ED, Tang Y (2018) Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges. Water Res 132:260–269

    Article  CAS  PubMed  Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 4:406–433

    Article  Google Scholar 

  • Iturbe R, López J (2015) Bioremediation for a soil contaminated with hydrocarbons. J Pet Environ Biotechnol 06

    Google Scholar 

  • Iwasaki T, Suzuki S, Kojima T (2014) Influence of biomass pyrolysis temperature, heating rate and type of biomass on produced char in a fluidized bed reactor. Energy Environ Res 4:64–72

    Article  Google Scholar 

  • Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Park J, Hun K, Park S, Heo J, Her N, Oh J, Yun S, Yoon Y (2013) Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J Hazard Mater 263:702–710

    Article  CAS  PubMed  Google Scholar 

  • Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378

    Article  CAS  Google Scholar 

  • Kang S, Jian-chun J, Dan-dan C (2011) Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification. Biomass Bioenergy 35:3643–3647

    Article  Google Scholar 

  • Karaj S, Kanyaporn C, Maurer C, Meissner K, Kiatsiriroat T, Müller J (2011) Physico – chemical characterization of Biochar products from Jatropha curcas L. shells, press cake and solid biogas digestate. In: Asia Pacific Biochar conference, APBC Kyoto 2011

    Google Scholar 

  • Kargar M, Clark OG, Hendershot WH, Jutras P, Prasher SO (2015) Immobilization of trace metals in contaminated urban soil amended with compost and biochar. Water Air Soil Pollut 226:191

    Article  Google Scholar 

  • Khan S, Wang N, Reid BJ, Freddo A, Cai C (2013) Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environ Pollut 175:64–68

    Article  CAS  PubMed  Google Scholar 

  • Kim WK, Shim T, Kim YS, Hyun S, Ryu C, Park YK, Jung J (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270

    Article  CAS  PubMed  Google Scholar 

  • Kumpiene J (2010) Trace element immobilization in soil using amendments

    Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int 87:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Laghari M, Naidu R, Xiao B, Hu Z, Mirjat MS, Hu M, Kandhro MN, Chen Z, Guo D, Jogi Q, Abudi ZN, Fazal S (2016) Recent developments in biochar as an effective tool for agricultural soil management: a review. J Sci Food Agric 96:4840–4849

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. Sci Technol 1:1–12

    Google Scholar 

  • Liu T, Liu B, Zhang W (2014) Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: its application in soil amendment. Polish J Environ Stud 23:271–275

    CAS  Google Scholar 

  • Liu CH, Chuang YH, Li H, Boyd SA, Teppen BJ, Gonzalez JM, Johnston CT, Lehmann J, Zhang W (2019) Long-term sorption of lincomycin to biochars: the intertwined roles of pore diffusion and dissolved organic carbon. Water Res 161:108–118

    Article  CAS  PubMed  Google Scholar 

  • Malińska K, Golańska M, Cáceres R, Rorat A, Weisser P, Ewelina Ś (2017) Biochar amendment for integrated composting and vermicomposting of sewage sludge—the effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour Technol 225:206–214

    Article  PubMed  Google Scholar 

  • Méndez A, Gómez A, Paz-Ferreiro J, Gascó G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89:1354–1359

    Article  PubMed  Google Scholar 

  • Meng J, Wang L, Liu X, Wu J, Brookes PC, Xu J (2013) Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresour Technol 142:641–646

    Article  CAS  PubMed  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  PubMed  Google Scholar 

  • Monlau F, Sambusiti C, Antoniou N, Barakat A, Zabaniotou A (2015) A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl Energy 148:32–38

    Article  Google Scholar 

  • Mukherjee S, Weihermuller L, Tappe W, Hofmann D, Koppchen S, Laabs V, Vereecken H, Burauel P (2016) Sorption-desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems. Sci Total Environ 559:63–73

    Article  CAS  PubMed  Google Scholar 

  • Nartey OD, Zhao B (2014) Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Adv Mater Sci Eng 2014:1–12

    Article  Google Scholar 

  • Neumann J, Binder S, Apfelbacher A, Gasson JR, Ramírez García P, Hornung A (2014) Production and characterization of a new quality pyrolysis oil, char and syngas from digestate – Introducing the thermo-catalytic reforming process. J Anal Appl Pyrolysis 113:137–142

    Article  Google Scholar 

  • Novotny EH, Branco de Freitas Maia CM, de Melo Carvalho MT, Emöke Madari B (2015) Biochar: pyrogenic carbon for agricultural use—a critical review. Rev Bras Ciência do Solo 39:321–344

    Article  Google Scholar 

  • Oh SY, Seo YD (2016) Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms. Environ Sci Pollut Res 23:951–961

    Article  CAS  Google Scholar 

  • Ok YS, Uchimiya SM, Chang SX, Bolan N (2015) Biochar: production, characterization, and applications. CRC, Boca Raton

    Google Scholar 

  • Paz-Ferreiro J, Liang C, Fu S, Mendez A, Gasco G (2015) The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils. PLoS One 10:1–11

    Article  Google Scholar 

  • Peng W, Pivato A (2017) Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valorization 10:465–481

    Article  Google Scholar 

  • Pituello C, Francioso O, Simonetti G, Pisi A, Torreggiani A, Berti A, Morari F (2014) Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J. Soils Sediment 15:792–804

    Article  Google Scholar 

  • Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100:5348–5351

    Article  CAS  PubMed  Google Scholar 

  • Rajapaksha AU, Vithanage M, Zhang M, Ahmad M, Mohan D, Chang SX, Ok YS (2014) Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour Technol 166:303–308

    Article  CAS  PubMed  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  PubMed  Google Scholar 

  • Rehrah D, Bansode RR, Hassan O, Ahmedna M (2015) Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. J Anal Appl Pyrolysis 118:42–53

    Article  Google Scholar 

  • Rodriguez M (2010) Biochar as a strategy for sustainable land management, poverty reduction and climate change mitigation/adaptation? Carbon NY

    Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 48:516–525

    Article  CAS  Google Scholar 

  • Singh BP, Cowie AL, Smernik RJ (2012) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46:11770–11778

    Article  CAS  PubMed  Google Scholar 

  • Sizmur T, Quilliam R, Puga AP, Moreno-Jiménez E, Beesley L, Gomez-Eyles JL (2015) Application of biochar for soil remediation. Soil Sci Soc Am Spec Publ 63:1–30

    Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1:289–303

    Article  CAS  Google Scholar 

  • Stavropoulos GG, Samaras P, Sakellaropoulos GP (2008) Effect of activated carbons modification on porosity, surface structure and phenol adsorption. J Hazard Mater 151:414–421

    Article  CAS  PubMed  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Różyło K (2017) Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment. Sci Total Environ 599–600:854–862

    Article  PubMed  Google Scholar 

  • Tampio E, Salo T, Rintala J (2016) Agronomic characteristics of five different urban waste digestates. J Environ Manag 169:293–302

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  PubMed  Google Scholar 

  • Tsai WT, Liu SC, Chen HR, Chang YM, Tsai YL (2012) Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 89:198–203

    Article  CAS  PubMed  Google Scholar 

  • van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, Van Der Velde M, Diafas I (2010) Biochar application to soils. JRC scientific and technical report

    Google Scholar 

  • Vithanage M, Rajapaksha AU, Tang X, Thiele-Bruhn S, Kim KH, Lee S-E, Ok YS (2014) Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J Environ Manag 141:95–103

    Article  CAS  Google Scholar 

  • Wang Z, Han L, Sun K, Jin J, Ro KS, Libra JA, Liu X, Xing B (2016) Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures. Chemosphere 144:285–291

    Article  CAS  PubMed  Google Scholar 

  • Waqas M, Khan S, Qing H, Reid BJ, Chao C (2014) The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 105:53–61

    Article  CAS  PubMed  Google Scholar 

  • Weyers SL, Spokas K a (2011) Impact of biochar on earthworm populations: a review. Appl Environ Soil Sci 2011:1–12

    Article  Google Scholar 

  • Williams M, Martin S, Kookana RS (2015) Sorption and plant uptake of pharmaceuticals from an artificially contaminated soil amended with biochars. Plant Soil 395:75–86

    Article  CAS  Google Scholar 

  • Wongrod S, Simon S, Guibaud G, Lens PNL, Pechaud Y, Huguenot D, van Hullebusch ED (2018a) Lead sorption by biochar produced from digestates: consequences of chemical modification and washing. J Environ Manag 219:277–284

    Article  CAS  Google Scholar 

  • Wongrod S, Simon S, van Hullebusch ED, Lens PNL, Guibaud G (2018b) Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption. Int Biodeter Biodegr 135:96–102

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Xu RK, Xiao SC, Yuan JH, Zhao AZ (2011) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol 102:10293–10298

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Hu X, Ding Z, Chen Y, Gao B (2017) Waste-art-paper biochar as an effective sorbent for recovery of aqueous Pb(II) into value-added PbO nanoparticles. Chem Eng J 308:863–871

    Article  CAS  Google Scholar 

  • Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS (2012) Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem Eng J 200–202:673–680

    Article  Google Scholar 

  • Yang R, Liu G, Xu X, Li M, Zhang J, Hao X (2011) Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibers prepared by phosphoric acid activation. Biomass Bioenergy 35:437–445

    Article  CAS  Google Scholar 

  • Yang Y, Zhang W, Qiu H, Tsang DCW, Morel JL, Qiu R (2016) Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: role of pH buffer and competition. Chemosphere 161:438–445

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Lu T, Huang H, Zhao D, Kobayashi N, Chen Y (2015) Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J Anal Appl Pyrolysis 112:284–289

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483

    Article  CAS  Google Scholar 

  • Zhang QZ, Dijkstra FA, Liu XR, Wang YD, Huang J, Lu N (2014) Effects of biochar on soil microbial biomass after four years of consecutive application in the north China Plain. PLoS One 9:1–8

    Google Scholar 

  • Zhang X, Sarmah AK, Bolan NS, He L, Lin X, Che L, Tang C, Wang H (2015) Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere 142:28–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Huang X, Jia Y, Rees F, Tsang DCW, Qiu R, Wang H (2016) Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment. Environ Geochem Health 39(2):379–389

    Article  PubMed  Google Scholar 

  • Zheng H, Wang Z, Zhao J, Herbert S, Xing B (2013) Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ Pollut 181:60–67

    Article  CAS  PubMed  Google Scholar 

  • Zielińska A, Oleszczuk P (2015) The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass Bioenergy 75:235–244

    Article  Google Scholar 

  • Zielińska A, Oleszczuk P (2016) Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils. Environ Sci Pollut Res 23:21822–21832

    Article  Google Scholar 

  • Zielińska A, Oleszczuk P, Charmas B, Skubiszewska-Zięba J, Pasieczna-Patkowska S (2015) Effect of sewage sludge properties on the biochar characteristic. J Anal Appl Pyrolysis 112:201–213

    Article  Google Scholar 

Download references

Acknowledgements

This chapter emanated from the PhD thesis entitled “Biochars from solid digestates as sorbing materials for metal(loid)s removal from water” by Suchanya Wongrod. The authors are thankful to the financial support by the Marie Sklodowska-Curie European Joint Doctorate in Advanced Biological Waste-to-Energy Technologies (ABWET) under the European Union’s Horizon 2020 framework (grant agreement N° 643071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suchanya Wongrod or Eric D. van Hullebusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wongrod, S. et al. (2022). Biochar Produced from Organic Waste Digestate and Its Potential Utilization for Soil Remediation: An Overview. In: Sinharoy, A., Lens, P.N.L. (eds) Renewable Energy Technologies for Energy Efficient Sustainable Development. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-87633-3_10

Download citation

Publish with us

Policies and ethics