Skip to main content

Multi-task Deep Segmentation and Radiomics for Automatic Prognosis in Head and Neck Cancer

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2021)

Abstract

We propose a novel method for the prediction of patient prognosis with Head and Neck cancer (H&N) from FDG-PET/CT images. In particular, we aim at automatically predicting Disease-Free Survival (DFS) for patients treated with radiotherapy or both radiotherapy and chemotherapy. We design a multi-task deep UNet to learn both the segmentation of the primary Gross Tumor Volume (GTVt) and the outcome of the patient from PET and CT images. The motivation for this approach lies in the complementarity of the two tasks and the shared visual features relevant to both tasks. A multi-modal (PET and CT) 3D UNet is trained with a combination of survival and Dice losses to jointly learn the two tasks. The model is evaluated on the HECKTOR 2020 dataset consisting of 239 H&N patients with PET, CT, GTVt contours and DFS data (five centers). The results are compared with a standard Cox PET/CT radiomics model. The proposed multi-task CNN reaches a C-index of 0.723, outperforming both the deep radiomics model without segmentation (C-index of 0.650) and the standard radiomics model (C-index of 0.695). Besides the improved performance in outcome prediction, the main advantage of the proposed multi-task approach is that it can predict patient prognosis without a manual delineation of the GTVt, a tedious and time-consuming process that hinders the validation of large-scale radiomics studies. The code will be shared for reproducibility on our GitHub repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/vandrearczyk.

  2. 2.

    The main difference is the reduced number of filters to be able to use a larger batch-size for the survival loss in Sect. 2.2.

  3. 3.

    24 GLCM, 16 GLRLM, and 16 GLDZM features. A Fixed Bin Number (FBN) of 64 and a Fixed Bin Size (FBS) of 50 are used for CT. A FBN of 8 and a FBS of 1 are used for PET.

References

  1. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016)

    Article  Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  4. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET/CT. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 1–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_1

    Chapter  Google Scholar 

  5. Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1), 73–82 (1995)

    Article  Google Scholar 

  6. Ranganath, R., Perotte, A., Elhadad, N., Blei, D.: Deep survival analysis. In: Machine Learning for Healthcare Conference, pp. 101–114. PMLR (2016)

    Google Scholar 

  7. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 1–12 (2018)

    Article  Google Scholar 

  8. Steingrimsson, J.A., Morrison, S.: Deep learning for survival outcomes. Stat. Med. 39(17), 2339–2349 (2020)

    Article  MathSciNet  Google Scholar 

  9. Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T.: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II, vol. 11384. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-11726-9

  10. Baek, S., et al.: Deep segmentation networks predict survival of non-small cell lung cancer. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  11. Parekh, V.S., Jacobs, M.A.: Deep learning and radiomics in precision medicine. Expert Rev. Precis. Med. Drug Dev. 4(2), 59–72 (2019)

    Article  Google Scholar 

  12. Diamant, A., Chatterjee, A., Vallières, M., Shenouda, G., Seuntjens, J.: Deep learning in head & neck cancer outcome prediction. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  13. Zhang, Y., Lobo-Mueller, E.M., Karanicolas, P., Gallinger, S., Haider, M.A., Khalvati, F.: CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging. BMC Med. Imaging 20(1), 1–8 (2020)

    Article  Google Scholar 

  14. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018)

    Article  Google Scholar 

  15. Li, H., et al.: Deep convolutional neural networks for imaging data based survival analysis of rectal cancer. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 846–849. IEEE (2019)

    Google Scholar 

  16. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  17. Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? In: International Conference on Machine Learning, pp. 9120–9132. PMLR (2020)

    Google Scholar 

  18. Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging 6(3), 034002 (2019)

    Article  Google Scholar 

  19. Weninger, L., Liu, Q., Merhof, D.: Multi-task learning for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 327–337. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_31

    Chapter  Google Scholar 

  20. Multi-task deep learning based ct imaging analysis for covid-19 pneumonia: classification and segmentation

    Google Scholar 

  21. Graziani, M., Otálora, S., Muller, H., Andrearczyk, V.: Guiding CNNs towards relevant concepts by multi-task and adversarial learning. arXiv preprint arXiv:2008.01478 (2020)

  22. Iantsen, A., Visvikis, D., Hatt, M.: Squeeze-and-excitation normalization for automated delineation of head and neck primary tumors in combined PET and CT images. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 37–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_4

    Chapter  Google Scholar 

  23. Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  24. Suter, Y., et al.: Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 20(1), 1–13 (2020)

    Article  Google Scholar 

  25. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017)

    Article  Google Scholar 

  26. David, C.R., et al.: Regression models and life tables (with discussion). J. Roy. Stat. Soc. 34(2), 187–220 (1972)

    Google Scholar 

  27. Harrell, F.E., Lee, K.L., Mark, D.B.: Tutorial in biostatistics multivariable prognostic models. Stat. Med. 15, 361–387 (1996)

    Article  Google Scholar 

  28. Andrearczyk, V., Oreiller, V., Depeursinge, A.: Oropharynx detection in PET-CT for tumor segmentation. In: Irish Machine Vision and Image Processing (2020)

    Google Scholar 

  29. Vallieres, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 1–14 (2017)

    Article  Google Scholar 

  30. Chennupati, S., Sistu, G., Yogamani, S., Rawashdeh, S.A.: MultiNet++: multi-stream feature aggregation and geometric loss strategy for multi-task learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  31. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  32. Andrearczyk, V., Depeursinge, A., Müller, H.: Neural network training for cross-protocol radiomic feature standardization in computed tomography. J. Med. Imaging 6(3), 024008 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Swiss National Science Foundation (SNSF, grant 205320_179069) and the Swiss Personalized Health Network (SPHN via the IMAGINE and QA4IQI projects).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Andrearczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrearczyk, V. et al. (2021). Multi-task Deep Segmentation and Radiomics for Automatic Prognosis in Head and Neck Cancer. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds) Predictive Intelligence in Medicine. PRIME 2021. Lecture Notes in Computer Science(), vol 12928. Springer, Cham. https://doi.org/10.1007/978-3-030-87602-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87602-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87601-2

  • Online ISBN: 978-3-030-87602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics