Skip to main content

Microbial Antagonists from Different Environments Used in the Biocontrol of Plant Pathogens

  • Chapter
  • First Online:
Microbial Biocontrol: Food Security and Post Harvest Management

Abstract

The control of plant diseases is generally done with the application of synthetic pesticides; however, their use causes problems of environmental contamination and human and animal health. Biocontrol through the application of microbial antagonists is an option to the use of synthetic pesticides. Antagonistic microorganisms have been isolated from various environments and have shown to have a high efficiency in the control of diseases in plants, surpassing the effect of synthetic pesticides. The various antagonistic mechanisms of microorganisms allow an efficient control of phytopathogens. The application of microbial antagonists is an option in the integrated management of plant diseases to a sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  Google Scholar 

  • Aguirre-Güitrón L, Calderón-Santoyo M, Bautista-Rosales PU, Ragazzo-Sánchez JA (2019) Application of powder formulation of Meyerozyma caribbica for postharvest control of Colletotrichum gloeosporioides in mango (Mangifera indica L.). LWT-Food Sci Technol 113:1–6

    Article  Google Scholar 

  • Aloui H, Licciardello F, Khwaldia K, Hamdi M, Restuccia C (2015) Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. Int J Food Microbiol 200:22–30

    Article  CAS  PubMed  Google Scholar 

  • Alvarez A, Gelezoglo R, Garmendia G, González ML, Magnoli AP, Arrarte E, Cavaglieri LR, Vero S (2019) Role of Antarctic yeast in biocontrol of Penicillium expansum and patulin reduction of apples. Environ Sustain 2:277–283

    Article  CAS  Google Scholar 

  • Arrarte E, Garmendia G, Rossini C, Wisniewski M, Vero S (2017) Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol Control 109:14–20

    Article  CAS  Google Scholar 

  • Avila-Quezada GD, Espino-Solis GP (2019) Silver nanoparticles offer effective control of pathogenic bacteria in a wide range of food products. In: Pathogenic bacteria. IntechOpen, Croatia

    Google Scholar 

  • Avila-Quezada G, Silva-Rojas HV, Sánchez-Chávez E, Leyva-Mir G, Martínez-Bolaños L, Guerrero-Prieto V, García-Ávila C, Gardea-Bejar A, Muñoz-Castellanos LN (2016) Seguridad alimentaria: La continua lucha contra las enfermedades de los cultivos. TECNOCIENCIA Chihuahua 10:133–142

    Google Scholar 

  • Avila-Quezada GD, Esquivel JF, Silva-Rojas HV, Leyva-Mir SG, Garcia-Avila C, Noriega-Orozco L, Rivas-Valencia P, Ojeda-Barrios DL, Melgoza-Castillo A (2018) Emerging plant diseases under a changing climate scenario: threats to our global food supply. Emir J Food Agric 30:1–10

    Google Scholar 

  • Barratt BIP, Moran VC, Bigler F, Van Lenteren JC (2018) The status of biological control and recommendations for improving uptake for the future. BioControl 63:155–167

    Article  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Canfora L, Costa C, Pallottino F, Mocali S (2021) Trends in soil microbial inoculants research: a science mapping approach to unravel strengths and weaknesses of their application. Agric 11:1–22

    Google Scholar 

  • Carmona-Hernandez S, Reyes-Pérez JJ, Chiquito-Contreras RG, Rincon-Enriquez G, Cerdan-Cabrera CR, Hernandez-Montiel LG (2019) Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy 9(3):121

    Article  CAS  Google Scholar 

  • Carolin CF, Kumar PS, Ngueagni PT (2020) A review on new aspects of lipopeptide biosurfactant: types, production, properties and its application in the bioremediation process. J Hazard Mater:124827

    Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  PubMed  Google Scholar 

  • Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C (2019) Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiol 82:70–74

    Article  CAS  PubMed  Google Scholar 

  • Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clement C, Ongena M, Dorey S (2020) Biosurfactants in plant protection against diseases: Rhamnolipids and lipopeptides case study. Front Bioeng Biotechnol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Czarnecka M, Żarowska B, Połomska X, Restuccia C, Cirvilleri G (2019) Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants defence mechanisms against Monilinia fructicola in apple fruits. Food Microbiol 83:1–8

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    Article  PubMed  Google Scholar 

  • de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2005) Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes. J Colloid Interface Sci 283:358–365

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Calder A, McLean JE, Britt DW, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26:913–924

    Article  CAS  PubMed  Google Scholar 

  • Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz E, Katz H, Keren-Tzur M, Shachnai A (1998) Commercial testing of aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol Control 12:97–101

    Article  Google Scholar 

  • Droby S, Vinokur V, Weiss B, Cohen L, Daus A, Goldschmidt EE, Porat R (2002) Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology 92:393–399

    Article  CAS  PubMed  Google Scholar 

  • Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2019) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 59:1498–1513

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Marcato PD, Ingle A, Gade A, Rai M (2010) Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In: Progress in mycology. Springer, Dordrecht, pp 425–449

    Chapter  Google Scholar 

  • El-Neshawy SM, Wilson CL (1997) Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biol Technol 10:9–14

    Article  CAS  Google Scholar 

  • Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q (2019) Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol 35(10):1–19

    Article  Google Scholar 

  • Ge B, Liu B, Nwet TT, Zhao W, Shi L, Zhang K (2016) Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol agent. PLoS One 11(11):e0166079

    Google Scholar 

  • González-Estrada RR, de Jesus Ascencio-Valle F, Ragazzo Sánchez JA, Calderón Santoyo M (2017a) Use of a marine yeast as a biocontrol agent of the novel pathogen Penicillium citrinum on Persian lime. Emir J Food Agric 29:114–122

    Article  Google Scholar 

  • González-Estrada RR, Carvajal-Millán E, Ragazzo-Sánchez JA, Bautista-Rosales PU, Calderón-Santoyo M (2017b) Control of blue mold decay on Persian lime: application of covalently cross-linked arabinoxylans bioactive coatings with antagonistic yeast entrapped. LWT-Food Sci Technol 85:187–196

    Article  Google Scholar 

  • Gossen BD, McDonald MR (2020) New technologies could enhance natural biological control and disease management and reduce reliance on synthetic pesticides. Can J Plant Pathol 42:30–40

    Article  Google Scholar 

  • Gramisci BR, Lutz MC, Lopes CA, Sangorrín MP (2018) Enhancing the efficacy of yeast biocontrol agents against postharvest pathogens through nutrient profiling and the use of other additives. Biol Control 121:151–158

    Article  Google Scholar 

  • Grzegorczyk M, Żarowska B, Restuccia C, Cirvilleri G (2017) Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Food Microbiol 61:93–101

    Article  PubMed  Google Scholar 

  • Guigón-López C, Vargas-Albores F, Guerrero-Prieto V, Ruocco M, Lorito M (2015) Changes in Trichoderma asperellum enzyme expression during parasitism of the cotton root rot pathogen Phymatotrichopsis omnivora. Fungal Biol 119:264–273

    Article  PubMed  Google Scholar 

  • Guigón-López CG, Muñoz-Castellanos LN, Ortiz NAF, González JAG (2019) Control of powdery mildew (Leveillula taurica) using Trichoderma asperellum and Metarhizium anisopliae in different pepper types. BioControl 64:77–89

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Google Scholar 

  • Hernandez-Montiel LG, Zulueta-Rodriguez R, Angulo C, Rueda-Puente EO, Quiñonez-Aguilar EE, Galicia R (2017) Marine yeasts and bacteria as biological control agents against anthracnose on mango. J Phytopathol 165:833–840

    Article  CAS  Google Scholar 

  • Hernandez-Montiel LG, Gutierrez-Perez ED, Murillo-Amador B, Vero S, Chiquito-Contreras RG, Rincon-Enriquez G (2018) Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol Technol 139:31–37

    Article  Google Scholar 

  • Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon J (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60:78-85

    Google Scholar 

  • Höfte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161:464–471

    Article  PubMed  Google Scholar 

  • Hu H, Yan F, Wilson C, Shen Q, Zheng X (2015) The ability of a cold-adapted Rhodotorula mucilaginosa strain from Tibet to control blue mold in pear fruit. Antonie van Leeuw 108:1391–1404

    Article  CAS  Google Scholar 

  • Hu H, Wisniewski ME, Abdelfattah A, Zheng X (2017) Biocontrol activity of a cold-adapted yeast from Tibet against gray mold in cherry tomato and its action mechanism. Extremophiles 21:789–803

    Article  PubMed  Google Scholar 

  • Jadhav HP, Shaikh SS, Sayyed RZ (2017) Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In: Rhizotrophs: plant growth promotion to bioremediation. Springer, Singapore, pp 183–203

    Chapter  Google Scholar 

  • Jayaseelan C, Abdul Rahuman A, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Bhaskara-Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  • Kachhawa D (2017) Microorganisms as a biopesticides. J Entomol Zool Stud 5:468–473

    Google Scholar 

  • Kefi A, Slimene IB, Karkouch I, Rihouey C, Azaeiz S, Bejaoui M, Belaid R, Cosette P, Jouenne T, Limam F (2015) Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World J Microbiol Biotechnol 31:1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016) Formulation technology of biocontrol agents: present status and future prospects. In: Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52

    Google Scholar 

  • Klein MN, Kupper KC (2018) Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus. Food Microbiol 69:1–10

    Article  CAS  PubMed  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kourmentza K, Gromada X, Michael N, Degraeve C, Vanier G, Ravallec R, Coutte F, Karatzas KA, Jauregi P (2021) Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Front Microbiol 11:3398

    Article  Google Scholar 

  • Kumar V, Verma DK, Pandey AK, Srivastava S (2019) Trichoderma spp.: Identification and characterization for pathogenic control and its potential application. Microbiol Sust Agric Soil Health Environ Prot:223

    Google Scholar 

  • Lakatos ES, Ene N, Popa O, Babeanu N (2019) The potential applications of Bacillus sp. and Pseudomonas sp. strains with antimicrobial activity against phytopathogens, in waste oils and the bioremediation of hydrocarbons. Catalysts 9:959

    Article  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160

    Article  PubMed  Google Scholar 

  • Luiz de Oliveira J, Ramos Campos EV, Fraceto LF (2018) Recent developments and challenges for nanoscale formulation of botanical pesticides for use in sustainable agriculture. J Agric Food Chem 66:8898–8913

    Article  CAS  PubMed  Google Scholar 

  • Lyousfi N, Lahlali R, Letrib C, Belabess Z, Ouaabou R, Ennahli S, Blenzar A, Barka EA (2021) Improving the biocontrol potential of bacterial antagonists with salicylic acid against brown rot disease and impact on nectarine fruits quality. Agronomy 11:209

    Article  CAS  Google Scholar 

  • Mahawar H, Prasanna R, Gogoi R, Singh SB, Chawla G, Kumar A (2020) Synergistic effects of silver nanoparticles augmented Calothrix elenkinii for enhanced biocontrol efficacy against Alternaria blight challenged tomato plants. 3 Biotech 10:1–10

    Article  Google Scholar 

  • Maksimov IV, Abizgil'dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Marin-Bruzos M, Grayston SJ (2019) Biological control of nematodes by plant growth promoting rhizobacteria: Secondary metabolites involved and potential applications. In: Secondary metabolites of plant growth promoting rhizomicroorganisms. Springer, Singapore, pp 253–264

    Chapter  Google Scholar 

  • Massart S, Jijakli H (2014) Pichia anomala and Candida oleophila in biocontrol of postharvest diseases of fruits: 20 years of fundamental and practical research. In Plant Pathology in the 21st Century: Contributions to the 10th International Congress of Plant Pathology. Springer

    Google Scholar 

  • Mishra P, Mishra J, Dwivedi SK, Arora NK (2020) Microbial enzymes in biocontrol of phytopathogens. In Microbial Enzymes: Roles and Applications in Industries (pp. 259-285). Springer, Singapore

    Google Scholar 

  • Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104:129–147

    Article  CAS  PubMed  Google Scholar 

  • Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pollut Res 23:6690–6699

    Article  CAS  Google Scholar 

  • Monte E (2001) Understanding Trichoderma: Between biotechnology and microbial ecology. Int Microbiol 4:1–4

    CAS  PubMed  Google Scholar 

  • Moraes Bazioli J, Belinato JR, Costa JH, Akiyama DY, Pontes JGDM, Kupper KC, Augusto F, de Carvalho JE, Fill TP (2019) Biological control of citrus postharvest phytopathogens. Toxins 11:460

    Article  PubMed Central  Google Scholar 

  • Morris M, Mitchell C (2020) Microbial Inoculants. National Center for Appropriate Technology (pp. 1-12). ATTRA Sustainable Agriculture

    Google Scholar 

  • Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629

    Article  CAS  PubMed  Google Scholar 

  • Nie X, Zhang C, Jiang C, Zhang R, Guo F, Fan X (2019) Trehalose increases the oxidative stress tolerance and biocontrol efficacy of Candida oleophila in the microenvironment of pear wounds. Biol Control 132:23–28

    Article  CAS  Google Scholar 

  • Parafati L, Vitale A, Restuccia C, Cirvilleri G (2016) The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit. Food Microbiol 58:87–94

    Article  CAS  PubMed  Google Scholar 

  • Park G, Nam J, Kim J, Song J, Kim PI, Min HJ, Lee CW (2019) Structure and mechanism of surfactin peptide from Bacillus velezensis antagonistic to fungi plant pathogens. B Korean Chem Soc 40:704–709

    Article  CAS  Google Scholar 

  • Perez MF, Díaz MA, Pereyra MM, Córdoba JM, Isas AS, Sepúlveda M, Ramallo J, Dib JR (2019) Biocontrol features of Clavispora lusitaniae against Penicillium digitatum on lemons. Postharvest Biol Technol 155:57–64

    Article  Google Scholar 

  • Pylak M, Oszust K, Frąc M (2019) Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev Environ Sci Biotechnol 18:597–616

    Article  CAS  Google Scholar 

  • Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98:1951–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P (2018) Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: Emerging role of nanotechnology. Appl Microbiol Biotechnol 102:6827–6839

    Article  CAS  PubMed  Google Scholar 

  • Rani M, Weadge JT, Jabaji S (2020) Isolation and characterization of biosurfactant-producing bacteria from oil well batteries with antimicrobial activities against food-borne and plant pathogens. Front Microbiol 11:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Rebib H, Hedi A, Roussent M, Boudabous A, Limam F, Sadfi-Zouaoui N (2012) Biological control of Fusarium foot rot of wheat using fengycin-producing Bacillus subtilis isolated from salty soil. Afr J Biotechnol 11:8464–8475

    CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  • Reyes-Perez JJ, Vero S, Diaz-Rivera E, Lara L, Noa CJ, Hernandez-Montiel L (2019) Application of chlorine dioxide (ClO2) and marine yeasts to control postharvest anthracnose disease in mango (Mangifera indica L.). Cienc Investig Agrar 46:266–275

    Article  Google Scholar 

  • Rivas-Garcia T, Murillo-Amador B, Nieto-Garibay A, Chiquito-Contreras R, Rincon-Enriquez G, Hernandez-Montiel L (2018) Effect of ulvan on the biocontrol activity of Debaryomyces hansenii and Stenotrophomonas rhizophila against fruit rot of Cucumis melo L. Agronomy 8:273

    Article  CAS  Google Scholar 

  • Rivas-Garcia T, Murillo-Amador B, Nieto-Garibay A, Rincon-Enriquez G, Chiquito-Contreras RG, Hernandez-Montiel LG (2019) Enhanced biocontrol of fruit rot on muskmelon by combination treatment with marine Debaryomyces hansenii and Stenotrophomonas rhizophila and their potential modes of action. Postharvest Biol Technol 151:61–67

    Article  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interac 20:430–440

    Article  CAS  Google Scholar 

  • Sammauria R, Kumawat S, Kumawat P, Singh J, Jatwa TK (2020) Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch Microbiol 202:677–693

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar M, Amaresan N, Sankaranarayanan A (2021) Isolation of bacteria with biocontrol activity against phytopathogens: dual plate assay. In: Plant-microbe interactions. Humana, New York, pp 167–169

    Chapter  Google Scholar 

  • Shen H, Wei Y, Wang X, Xu C, Shao X (2019) The marine yeast Sporidiobolus pararoseus ZMY-1 has antagonistic properties against Botrytis cinerea in vitro and in strawberry fruit. Postharvest Biol Technol 150:1–8

    Article  Google Scholar 

  • Srivastava DA, Harris R, Breuer G, Levy M (2021) Secretion-based modes of action of biocontrol agents with a focus on Pseudozyma aphidis. Plan Theory 10:210

    CAS  Google Scholar 

  • Timsina J (2018) Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy 8:214

    Article  CAS  Google Scholar 

  • Van Bogaert INA, Saerens K, De Muynck C, Develter D, Wim S, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34

    Article  PubMed  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59

    Article  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Velho RV, Medina LFC, Segalin J, Brandelli A (2011) Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol 56:297

    Article  CAS  Google Scholar 

  • Vero S, Garmendia G, González MB, Bentancur O, Wisniewski M (2013) Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res 13:189–199

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Wang Y, Luo Y, Sui Y, Xie Z, Liu Y, Jiang M, Liu J (2018) Exposure of Candida oleophila to sublethal salt stress induces an antioxidant response and improves biocontrol efficacy. Biol Control 132:23–28

    Google Scholar 

  • Wang F, Xiao J, Zhang Y, Li R, Liu L, Deng J (2021) Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biol Technol 174:111456

    Article  CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

  • Zhang L, Sun C (2018) Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol 84:1–17

    Article  Google Scholar 

  • Zhu R, Yu T, Guo S, Hu HAO, Zheng X, Karlovsky P (2015) Effect of the yeast Rhodosporidium paludigenum on postharvest decay and patulin accumulation in apples and pears. J Food Protec 78:157–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Hernandez-Montiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Droby, S., Gonzalez-Estrada, R.R., Avila-Quezada, G., Durán, P., Manzo-Sánchez, G., Hernandez-Montiel, L.G. (2022). Microbial Antagonists from Different Environments Used in the Biocontrol of Plant Pathogens. In: Kumar, A. (eds) Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87289-2_9

Download citation

Publish with us

Policies and ethics