Skip to main content

Retina-Match: Ipsilateral Mammography Lesion Matching in a Single Shot Detection Pipeline

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

In mammography and tomosynthesis, radiologists use the geometric relationship of the four standard screening views to detect breast abnormalities. To date, computer aided detection methods focus on formulations based only on a single view. Recent multi-view methods are either black box approaches using methods such as relation blocks, or perform extensive, case-level feature aggregation requiring large data redundancy. In this study, we propose Retina-Match, an end-to-end trainable pipeline for detection, matching, and refinement that can effectively perform ipsilateral lesion matching in paired screening mammography images. We demonstrate effectiveness on a private, digital mammography data set with 1,016 biopsied lesions and 2,000 negative cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arasu, V.A., et al.: Benefit of semiannual ipsilateral mammographic surveillance following breast conservation therapy. Radiology 264(2), 371–377 (2012)

    Google Scholar 

  2. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 1971–1980 (2019). https://doi.org/10.1109/ICCVW.2019.00246

  3. Sainz de Cea, M.V., Diedrich, K., Bakalo, R., Ness, L., Richmond, D.: Multi-task learning for detection and classification of cancer in screening mammography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 241–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_24

    Chapter  Google Scholar 

  4. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification (July 2017). https://doi.org/10.1109/CVPR.2017.145

  5. Geras, K., Wolfson, S., Kim, S., Moy, L., Cho, K.: High-resolution breast cancer screening with multi-view deep convolutional neural networks (March 2017)

    Google Scholar 

  6. Hagos, Y., Gubern-Mérida, A., Teuwen, J.: Improving breast cancer detection using symmetry information with deep learning. In: 3rd International Workshop, RAMBO 2018, 4th International Workshop, BIA 2018, and 1st International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings, pp. 90–97 (September 2018)

    Google Scholar 

  7. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)

    Google Scholar 

  8. Kooi, T., Litjens, G., et al.: Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)

    Article  Google Scholar 

  9. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV) pp. 2999–3007 (2017)

    Google Scholar 

  10. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  Google Scholar 

  11. Lu, Z., Rathod, V., Votel, R., Huang, J.: RetinaTrack: online single stage joint detection and tracking. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14656–14666 (2020)

    Google Scholar 

  12. Ma, J., Liang, S., Li, X., Li, H., Menze, B., Zhang, R., Zheng, W.: Cross-view relation networks for mammogram mass detection. arXiv arxiv:abs/1907.00528 (2019)

  13. McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Article  Google Scholar 

  14. Padayachee, J., Alport, M., Rae, W.: Mammographic CAD: correlation of regions in ipsilateral views - a pilot study. S. Afr. J. Radiol. 13 (2009). https://doi.org/10.4102/sajr.v13i3.497

  15. Qian, W., Song, D., Lei, M., Sankar, R., Eikman, E.: Computer-aided mass detection based on ipsilateral multiview mammograms. Acad. Radiol. 14(5), 530–538 (2007)

    Article  Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  17. Redmon, J., Farhadi, A.: Yolo9000: Better, faster, stronger (2016)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

  19. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015)

    Google Scholar 

  20. Sun, X., Qian, W., Song, D.: Ipsilateral-mammogram computer-aided detection of breast cancer. Comput. Med. Imaging Graph. 28(3), 151–158 (2004)

    Article  Google Scholar 

  21. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3349–3364 (2020). https://doi.org/10.1109/TPAMI.2020.2983686

    Article  Google Scholar 

  22. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018). https://doi.org/10.1109/CVPR.2018.00813

  23. Wei, J., et al.: Computer-aided detection of breast masses on mammograms: dual system approach with two-view analysis. Med. Phys. 36(10), 4451–4460 (2009)

    Article  Google Scholar 

  24. Yang, Z., et al.: MommiNet: mammographic multi-view mass identification networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 200–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhao Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, Y. et al. (2021). Retina-Match: Ipsilateral Mammography Lesion Matching in a Single Shot Detection Pipeline. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics