Skip to main content

Focusing on Clinically Interpretable Features: Selective Attention Regularization for Liver Biopsy Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12905))

Abstract

Liver biopsy image analysis is the gold standard for early diagnosis of non-alcoholic fatty liver disease (NAFLD) worldwide. Deep neural networks offer an effective tool for image analysis. However, when applying deep learning methods to smaller histological image datasets, the model may be distracted by dominant normal tissues and ignore critical tissue alterations that pathologists focus on. In this paper, we propose a selective attention regularization module (SAttenReg) to mimic the diagnosis process of pathologists. Specifically, to explicitly encourage the model to focus on clinically interpretable features (e.g., nuclei and fat droplets), SAttenReg learns the attention map with the regularization of clinically interpretable features. Furthermore, with the different contributions of histological features, the model can selectively focus on different histological features based on the distribution of nuclei in each instance. Experiments conducted on the in-house Liver-NAS and public Biopsy4Grading biopsy image datasets show that our method achieves superior classification performance with promising localization results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: ISMM (1), pp. 265–276 (2007)

    Google Scholar 

  2. Boyd, A., Cain, O., Chauhan, A., Webb, G.J.: Medical liver biopsy: background, indications, procedure and histopathology. Frontline Gastroenterol. 11(1), 40–47 (2020)

    Article  Google Scholar 

  3. Brunt, E.M.: Pathology of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 7(4), 195–203 (2010)

    Article  Google Scholar 

  4. Chalasan, N., et al.: The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology 55(6), 2005–2023 (2012)

    Article  Google Scholar 

  5. Forlano, R., et al.: High-throughput, machine learning-based quantification of steatosis, inflammation, ballooning, and fibrosis in biopsies from patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hep. 18(9), 2081–2090 (2020)

    Article  Google Scholar 

  6. Fu, X., Liu, T., Xiong, Z., Smaill, B.H., Stiles, M.K., Zhao, J.: Segmentation of histological images and fibrosis identification with a convolutional neural network. Comput. Biol. Med. 98, 147–158 (2018)

    Article  Google Scholar 

  7. Heinemann, F., Birk, G., Stierstorfer, B.: Deep learning enables pathologist-like scoring of nash models. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  9. Huang, Y., Chung, A.C.S.: Evidence localization for pathology images using weakly supervised learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 613–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_68

    Chapter  Google Scholar 

  10. Ji, Y., Zhang, R., Li, Z., Ren, J., Zhang, S., Luo, P.: UXNet: searching multi-level feature aggregation for 3D medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 346–356. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_34

    Chapter  Google Scholar 

  11. Kleiner, D.E., et al.: Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6), 1313–1321 (2005)

    Article  Google Scholar 

  12. Lerousseau, M., et al.: Weakly supervised multiple instance learning histopathological tumor segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 470–479. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_45

    Chapter  Google Scholar 

  13. Liu, J.J., Hou, Q., Cheng, M.M., Wang, C., Feng, J.: Improving convolutional networks with self-calibrated convolutions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10096–10105 (2020)

    Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  15. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  16. Sethunath, D.: Detection of histological features in liver biopsy images to help identify Non-Alcoholic Fatty Liver Disease. Ph.D. thesis (2018)

    Google Scholar 

  17. Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computational histopathology: a survey. Med. Image Anal. 67, 101813 (2020)

    Google Scholar 

  18. Takahashi, Y., Fukusato, T.: Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. WJG 20(42), 15539 (2014)

    Article  Google Scholar 

  19. Wei, Y., Rector, R.S., Thyfault, J.P., Ibdah, J.A.: Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J. Gastroenterol. WJG 14(2), 193 (2008)

    Article  Google Scholar 

  20. Williams, C.D., et al.: Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140(1), 124–131 (2011)

    Article  Google Scholar 

  21. Wong, R.J., et al.: Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the united states. Gastroenterology 148(3), 547–555 (2015)

    Article  Google Scholar 

  22. Younossi, Z., et al.: Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69(6), 2672–2682 (2019)

    Article  Google Scholar 

  23. Yu, Y., et al.: Deep learning enables automated scoring of liver fibrosis stages. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  24. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  25. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  26. Zhuang, J., Cai, J., Wang, R., Zhang, J., Zheng, W.-S.: Deep kNN for medical image classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 127–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_13

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by the Health and Medical Research Fund Project under Grant 07180216. We acknowledge insightful discussion with Anthony W.H. CHAN. We also thank Vincent WS WONG, Grace LH WONG, and Howard H.W. LEUNG from the Chinese University of Hong Kong for help with data preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pong C. Yuen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, C., Liu, S., Shao, R., Yuen, P.C. (2021). Focusing on Clinically Interpretable Features: Selective Attention Regularization for Liver Biopsy Image Classification. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics