Skip to main content

Cell Detection in Domain Shift Problem Using Pseudo-Cell-Position Heatmap

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12908))

Abstract

The domain shift problem is an important issue in automatic cell detection. A detection network trained with training data under a specific condition (source domain) may not work well in data under other conditions (target domain). We propose an unsupervised domain adaptation method for cell detection using the pseudo-cell-position heatmap, where a cell centroid becomes a peak with a Gaussian distribution in the map. In the prediction result for the target domain, even if a peak location is correct, the signal distribution around the peak often has a non-Gaussian shape. The pseudo-cell-position heatmap is re-generated using the peak positions in the predicted heatmap to have a clear Gaussian shape. Our method selects confident pseudo-cell-position heatmaps using a Bayesian network and adds them to the training data in the next iteration. The method can incrementally extend the domain from the source domain to the target domain in a semi-supervised manner. In the experiments using 8 combinations of domains, the proposed method outperformed the existing domain adaptation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2009)

    Google Scholar 

  2. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)

    Google Scholar 

  3. Cosatto, E., Miller, M., Graf, H.P., Meyer, J.S.: Grading nuclear pleomorphism on histological micrographs. In: ICPR (2008)

    Google Scholar 

  4. Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: CVPR (2020)

    Google Scholar 

  5. Eom, S., et al.: Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations. Sci. Data 5(1), 1–12 (2018)

    Google Scholar 

  6. Fujita, S., Han, X.-H.: Cell detection and segmentation in microscopy images with improved mask R-CNN. In: Sato, I., Han, B. (eds.) ACCV 2020. LNCS, vol. 12628, pp. 58–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69756-3_5

    Chapter  Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158 (2015)

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)

    Google Scholar 

  9. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  10. Ge, P., Ren, C.X., Dai, D.Q., Yan, H.: Domain adaptation and image classification via deep conditional adaptation network. arXiv preprint arXiv:2006.07776 (2020)

  11. Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. In: ICLR (2020)

    Google Scholar 

  12. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  13. Haq, M.M., Huang, J.: Adversarial domain adaptation for cell segmentation. In: MIDL (2020)

    Google Scholar 

  14. Jiang, P., Wu, A., Han, Y., Shao, Y., Qi, M., Li, B.: Bidirectional adversarial training for semi-supervised domain adaptation. In: IJCAI (2020)

    Google Scholar 

  15. Jin, S.Y., et al.: Unsupervised hard example mining from videos for improved object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 316–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_19

    Chapter  Google Scholar 

  16. Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_33

    Chapter  Google Scholar 

  17. Kim, T., Kim, C.: Attract, perturb, and explore: learning a feature alignment network for semi-supervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 591–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_35

    Chapter  Google Scholar 

  18. Li, D., Hospedales, T.: Online meta-learning for multi-source and semi-supervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 382–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_23

    Chapter  Google Scholar 

  19. Li, J., et al.: Signet ring cell detection with a semi-supervised learning framework. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 842–854. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_66

    Chapter  Google Scholar 

  20. Moskvyak, O., Maire, F., Dayoub, F., Baktashmotlagh, M.: Semi-supervised keypoint localization. arXiv preprint arXiv:2101.07988 (2021)

  21. Nieto, M.A., Huang, R.Y.J., Jackson, R.A., Thiery, J.P.: EMT: 2016. Cell 166(1), 21–45 (2016)

    Google Scholar 

  22. Nishimura, K., Ker, D.F.E., Bise, R.: Weakly supervised cell instance segmentation by propagating from detection response. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 649–657. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_72

    Chapter  Google Scholar 

  23. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Google Scholar 

  24. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: CVPR (2019)

    Google Scholar 

  25. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: CVPR (2019)

    Google Scholar 

  26. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured output via disentangled patch representations. In: ICCV (2018)

    Google Scholar 

  27. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  28. Vicar, T., et al.: Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison. BMC Bioinf. 20(1), 1–25 (2019)

    Google Scholar 

  29. Wang, Q., Breckon, T.: Unsupervised domain adaptation via structured prediction based selective pseudo-labeling. In: AAAI (2020)

    Google Scholar 

  30. Yi, J., et al.: Multi-scale cell instance segmentation with keypoint graph based bounding boxes. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 369–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_41

    Chapter  Google Scholar 

  31. Yin, Z., Kanade, T., Chen, M.: Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med. Image Anal. 16(5), 1047–1062 (2012)

    Google Scholar 

  32. Yuan, Y., et al.: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4(157), 157ra143 (2012)

    Google Scholar 

  33. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vis. 129, 1106–1120 (2020)

    Article  Google Scholar 

  34. Zhou, Y., Starkey, J., Mansinha, L.: Segmentation of petrographic images by integrating edge detection and region growing. Comput. Geosci. 30(8), 817–831 (2004)

    Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP20H04211 and JP21K19829.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonwoo Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, H., Nishimura, K., Watanabe, K., Bise, R. (2021). Cell Detection in Domain Shift Problem Using Pseudo-Cell-Position Heatmap. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics