Skip to main content

EMDQ-SLAM: Real-Time High-Resolution Reconstruction of Soft Tissue Surface from Stereo Laparoscopy Videos

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12904))

Abstract

We propose a novel stereo laparoscopy video-based non-rigid SLAM method called EMDQ-SLAM, which can incrementally reconstruct thee-dimensional (3D) models of soft tissue surfaces in real-time and preserve high-resolution color textures. EMDQ-SLAM uses the expectation maximization and dual quaternion (EMDQ) algorithm combined with SURF features to track the camera motion and estimate tissue deformation between video frames. To overcome the problem of accumulative errors over time, we have integrated a g2o-based graph optimization method that combines the EMDQ mismatch removal and as-rigid-as-possible (ARAP) smoothing methods. Finally, the multi-band blending (MBB) algorithm has been used to obtain high resolution color textures with real-time performance. Experimental results demonstrate that our method outperforms two state-of-the-art non-rigid SLAM methods: MISSLAM and DefSLAM. Quantitative evaluation shows an average error in the range of 0.8–2.2 mm for different cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://hamlyn.doc.ic.ac.uk/vision/.

References

  1. Maier-Hein, L., et al.: Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med. Image Anal. 17(8), 974–996 (2013)

    Google Scholar 

  2. Totz, J., Mountney, P., Stoyanov, D., Yang, G.-Z.: Dense surface reconstruction for enhanced navigation in MIS. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6891, pp. 89–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23623-5_12

    Chapter  Google Scholar 

  3. Lacher, R.M., et al.: Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation. Med. Image Anal. 53, 11–25 (2019)

    Article  Google Scholar 

  4. Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: CVPR, pp. 343–352 (2015)

    Google Scholar 

  5. Miroslava, S., Baust, M., Ilic, S.: Variational level set evolution for non-rigid 3D reconstruction from a single depth camera. IEEE TPAMI (2020)

    Google Scholar 

  6. Miroslava, S., Baust, M., Ilic, S.: SobolevFusion: 3D reconstruction of scenes undergoing free non-rigid motion. In: CVPR, pp. 2646–2655 (2018)

    Google Scholar 

  7. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob., 1309–1332 (2016)

    Google Scholar 

  8. Mahmoud, N., Hostettler, A., Collins, T., Soler, L., Doignon, C., Montiel, J.M.: SLAM based quasi dense reconstruction for minimally invasive surgery scenes. arXiv preprint arXiv:1705.09107 (2017)

  9. Mahmoud, N., Collins, T., Hostettler, A., Soler, L., Doignon, C., Montiel, J.M.: Live tracking and dense reconstruction for handheld monocular endoscopy. IEEE Trans. Med. Imaging 13, 38(1), 79–89 (2018)

    Google Scholar 

  10. Mountney, P., Yang, G.-Z.: Motion compensated SLAM for image guided surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 496–504. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_61

    Chapter  Google Scholar 

  11. Collins, T., Bartoli, A., Bourdel, N., Canis, M.: Robust, real-time, dense and deformable 3D organ tracking in laparoscopic videos. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_47

    Chapter  Google Scholar 

  12. Schoob, A., Kundrat, D., Kahrs, L.A., Ortmaier, T.: Stereo vision-based tracking of soft tissue motion with application to online ablation control in laser microsurgery. Med. Image Anal., 80–95 (2017)

    Google Scholar 

  13. Modrzejewski, R., Collins, T., Bartoli, A., Hostettler, A., Marescaux, J.: Soft-body registration of pre-operative 3D models to intra-operative RGBD partial body scans. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 39–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_5

    Chapter  Google Scholar 

  14. Petit, A., Lippiello, V., Siciliano, B.: Real-time Tracking of 3D Elastic Objects with an RGB-D Sensor. In: IROS (2015)

    Google Scholar 

  15. Song, J., Wang, J., Zhao, L., Huang, S., Dissanayake, G.: MIS-SLAM: real-time large-scale dense deformable SLAM system in minimal invasive surgery based on heterogeneous computing. IEEE Rob. Autom. Lett. 3(4), 4068–4075 (2018)

    Article  Google Scholar 

  16. Lamarca, J., Parashar, S., Bartoli, A., Montiel, J.M.: DefSLAM: tracking and mapping of deforming scenes from monocular sequences. IEEE Trans. Rob. (2020)

    Google Scholar 

  17. Zhou, H., Jayender, J.: Smooth deformation field-based mismatch removal in real-time. arXiv preprint arXiv:2007.08553 (2020)

  18. Kmmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: a general framework for graph optimization. In: ICRA, pp. 3607–3613 (2011)

    Google Scholar 

  19. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74(1), 59–73 (2007)

    Article  Google Scholar 

  20. Mur-Artal, R., Tard, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob., 1255–1262 (2017)

    Google Scholar 

  21. Zhou, H., Jayender, J.: Real-time dense reconstruction of tissue surface from stereo optical video. IEEE Trans. Med. Imaging 39(2), 400–412 (2019)

    Article  Google Scholar 

  22. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE TPAM I, 698–700 (1987)

    Article  Google Scholar 

  23. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  24. Sorkine, O., Alexa, M.: As-Rigid-As-Possible Surface Modeling. In: Symposium on Geometry Processing, vol. 4, pp. 109–116 (2007)

    Google Scholar 

  25. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. AMS, vol. 153. Springer, New York (2003). https://doi.org/10.1007/b98879

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health through Grant Numbers K99EB027177, R01EB025964 and P41EB015898. Unrelated to this publication, Jagadeesan Jayender owns equity in Navigation Sciences, Inc. He is a co-inventor of a navigation device to assist surgeons in tumor excision that is licensed to Navigation Sciences. Dr. Jayender interests were reviewed and are managed by BWH and Partners HealthCare in accordance with their conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadeesan Jayender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, H., Jayender, J. (2021). EMDQ-SLAM: Real-Time High-Resolution Reconstruction of Soft Tissue Surface from Stereo Laparoscopy Videos. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics