Skip to main content

Sli2Vol: Annotate a 3D Volume from a Single Slice with Self-supervised Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12902))

Abstract

The objective of this work is to segment any arbitrary structures of interest (SOI) in 3D volumes by only annotating a single slice, (i.e.  semi-automatic 3D segmentation). We show that high accuracy can be achieved by simply propagating the 2D slice segmentation with an affinity matrix between consecutive slices, which can be learnt in a self-supervised manner, namely slice reconstruction. Specifically, we compare our proposed framework, termed as Sli2Vol, with supervised approaches and two other unsupervised/self-supervised slice registration approaches, on 8 public datasets (both CT and MRI scans), spanning 9 different SOIs. Without any parameter-tuning, the same model achieves superior performance with Dice scores (0–100 scale) of over 80 for most of the benchmarks, including the ones that are unseen during training. Our results show generalizability of the proposed approach across data from different machines and with different SOIs: a major use case of semi-automatic segmentation methods where fully supervised approaches would normally struggle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Data science bowl cardiac challenge data. https://www.kaggle.com/c/second-annual-data-science-bowl

  2. Ahmad, M., et al..: Deep belief network modeling for automatic liver segmentation. IEEE Access 7, 20585–20595 (2019)

    Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imag. 38(8), 1788–1800 (2019)

    Google Scholar 

  4. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools 120, 122–125 (2000)

    Google Scholar 

  5. Dawant, B.M., Li, R., Lennon, B., Li, S.: Semi-automatic segmentation of the liver and its evaluation on the MICCAI 2007 grand challenge data set. In: Proceedings of the 3D Segmentation in The Clinic: A Grand Challenge, pp. 215–221 (2007)

    Google Scholar 

  6. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  7. Foruzan, A.H., Chen, Y.-W.: Improved segmentation of low-contrast lesions using sigmoid edge model. Int. J. Comput. Assist. Radiol. Surg , 11, 1–17 (2015). https://doi.org/10.1007/s11548-015-1323-x

  8. Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRI-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. 32(7), 1239–1248 (2013)

    Google Scholar 

  9. Heller, N., Sathianathen, N., Kalapara, A., et al.: C4kc kits challenge kidney tumor segmentation dataset (2019). https://doi.org/10.7937/TCIA.2019.IX49E8NX, https://wiki.cancerimagingarchive.net/x/UwakAw

  10. Hermann, S., Werner, R.: High accuracy optical flow for 3d medical image registration using the census cost function. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013. LNCS, vol. 8333, pp. 23–35. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53842-1_3

    Chapter  Google Scholar 

  11. Isensee, F., Petersen, J., Klein, A., et al.: nnU-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  12. Kavur, A.E., et al.: Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)

    Google Scholar 

  13. Kavur, A.E., Gezer, N.S., Barış, M., et al.: CHAOS challenge - combined (CT-MR) Healthy Abdominal Organ Segmentation, January 2020. https://arxiv.org/abs/2001.06535

  14. Keeling, S.L., Ring, W.: Medical image registration and interpolation by optical flow with maximal rigidity. Journal of Mathematical Imaging and Vision 23(1), 47–65 (2005)

    Google Scholar 

  15. Lai, Z., Lu, E., Xie, W.: Mast: a memory-augmented self-supervised tracker. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479–6488 (2020)

    Google Scholar 

  16. Lai, Z., Xie, W.: Self-supervised learning for video correspondence flow. In: British Machine Vision Conference (2019)

    Google Scholar 

  17. Li, C., et al.: A likelihood and local constraint level set model for liver tumor segmentation from CT volumes. IEEE Trans. Biomed. Eng. 60(10), 2967–2977 (2013)

    Google Scholar 

  18. Mocanu, S., Moody, A.R., Khademi, A.: Flowreg: fast deformable unsupervised medical image registration using optical flow. arXiv preprint arXiv:2101.09639 (2021)

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Roth, H., Farag, A., Turkbey, E.B., Lu, L., Liu, J., Summers, R.M.: Data from pancreas-CT (2016). https://doi.org/10.7937/K9/TCIA.2016.TNB1KQBU, https://wiki.cancerimagingarchive.net/x/eIlX

  21. Roth, H., et al.: A new 2.5D representation for lymph node detection in CT (2015). https://doi.org/10.7937/K9/TCIA.2015.AQIIDCNM, https://wiki.cancerimagingarchive.net/x/0gAtAQ

  22. Simpson, A.L., Antonelli, M., Bakas, S., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  23. Soler, L., et al.: 3D image reconstruction for comparison of algorithm database: a patient specific anatomical and medical image database. Tech. Rep, IRCAD, Strasbourg, France (2010)

    Google Scholar 

  24. Tran, S.T., Cheng, C.H., Liu, D.G.: A multiple layer u-net, un-net, for liver and liver tumor segmentation in CT. IEEE Access 9, 3752–3764 (2020)

    Google Scholar 

  25. Van Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: a grand challenge. In: MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge, vol. 1, pp. 7–15 (2007)

    Google Scholar 

  26. Wang, G., et al.: Slic-Seg: slice-by-slice segmentation propagation of the placenta in fetal MRI using one-plane scribbles and online learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 29–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_4

    Chapter  Google Scholar 

  27. Zheng, Z., Zhang, X., Xu, H., Liang, W., Zheng, S., Shi, Y.: A unified level set framework combining hybrid algorithms for liver and liver tumor segmentation in CT images. BioMed. Res. Int. 2018, 3815346 (2018)

    Google Scholar 

Download references

Acknowledgments

PH. Yeung is grateful for support from the RC Lee Centenary Scholarship. A. Namburete is funded by the UK Royal Academy of Engineering under its Engineering for Development Research Fellowship scheme. W. Xie is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant Seebibyte (EP/M013774/1) and Grant Visual AI (EP/T028572/1). We thank Madeleine Wyburd and Nicola Dinsdale for their valuable suggestions and comments about the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pak-Hei Yeung .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1668 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yeung, PH., Namburete, A.I.L., Xie, W. (2021). Sli2Vol: Annotate a 3D Volume from a Single Slice with Self-supervised Learning. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics