Skip to main content

SSLP: Spatial Guided Self-supervised Learning on Pathological Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12902))

Abstract

Nowadays, there is an urgent requirement of self-supervised learning (SSL) on whole slide pathological images (WSIs) to relieve the demand of finely expert annotations. However, the performance of SSL algorithms on WSIs has long lagged behind their supervised counterparts. To close this gap, in this paper, we fully explore the intrinsic characteristics of WSIs and propose SSLP: Spatial Guided Self-supervised Learning on Pathological Images. We argue the patch-wise spatial proximity is a significant characteristic of WSIs, if properly employed, shall provide abundant supervision for free. Specifically, we explore three semantic invariance from 1) self-invariance: the same patch of different augmented views, 2) intra-invariance: the patches within spatial neighbors and 3) inter-invariance: their corresponding neighbors in the feature space. As a result, our SSLP model achieves \(82.9\%\) accuracy and \(85.7\%\) AUC on CAMELYON linear classification and \(95.2\%\) accuracy fine-tuning on cross-disease classification on NCTCRC, which outperforms previous state-of-the-art algorithm and matches the performance of a supervised counterpart.

J. Li and T. Lin—These authors have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbet, C., Zlobec, I., Bozorgtabar, B., Thiran, J.P.: Divide-and-rule: self-supervised learning for survival analysis in colorectal cancer. In: Martel, A.L. et al. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, 12265, 480–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_46

  2. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views (2019). arXiv preprint: arXiv:1906.00910

  3. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Google Scholar 

  4. Bulten, W., et al.: Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21(2), 233–241 (2020)

    Google Scholar 

  5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments (2020). arXiv preprint: arXiv:2006.09882

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning. pp. 1597–1607. PMLR (2020)

    Google Scholar 

  7. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning (2020). arXiv preprint: arXiv:2003.04297

  8. Chen, X., He, K.: Exploring simple Siamese representation learning (2020). arXiv preprint: arXiv:2011.10566

  9. Coudray, N., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559–1567 (2018)

    Google Scholar 

  10. Dagogo-Jack, I., Shaw, A.T.: Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15(2), 81 (2018)

    Google Scholar 

  11. Dehaene, O., et al.: Self-supervision closes the gap between weak and strong supervision in histology (2020). arXiv preprint: arXiv:2012.03583

  12. Egeblad, M., Nakasone, E.S., Werb, Z.: Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18(6), 884–901 (2010)

    Google Scholar 

  13. Frankle, J., et al.: Are all negatives created equal in contrastive instance discrimination? (2020). arXiv preprint: arXiv:2010.06682

  14. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations (2018). arXiv preprint: arXiv:1803.07728

  15. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning (2020). arXiv preprint: arXiv:2006.07733

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  17. Huang, J., Dong, Q., Gong, S., Zhu, X.: Unsupervised deep learning by neighbourhood discovery (2019). arXiv preprint: arXiv:1904.11567

  18. Kather, J.N., Halama, N., Marx, A.: 100,000 histological images of human colorectal cancer and healthy tissue (2018). https://doi.org/10.5281/zenodo.1214456

  19. Kather, J.N., et al.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6(1), 1–11 (2016)

    Google Scholar 

  20. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning (2016). arXiv preprint: arXiv:1610.02242

  21. Lu, M.Y., Chen, R.J., Mahmood, F.: Semi-supervised breast cancer histology classification using deep multiple instance learning and contrast predictive coding (conference presentation). In: Medical Imaging 2020: Digital Pathology, vol. 11320, p. 113200J. International Society for Optics and Photonics (2020)

    Google Scholar 

  22. Mercan, C., et al.: Virtual staining for mitosis detection in breast histopathology. In: 2020 IEEE 17th International Symposium on Biomedical Imaging, pp. 1770–1774. IEEE (2020)

    Google Scholar 

  23. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018)

    Google Scholar 

  24. Ngiam, K.Y., Khor, W.: Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 20(5), e262–e273 (2019)

    Google Scholar 

  25. Niazi, M.K.K., Parwani, A.V., Gurcan, M.N.: Digital pathology and artificial intelligence. Lancet Oncol. 20(5), e253–e261 (2019)

    Google Scholar 

  26. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding (2018). arXiv preprint: arXiv:1807.03748

  27. Sahiner, B., et al.: Deep learning in medical imaging and radiation therapy. Med. Phys. 46(1), e1–e36 (2019)

    Google Scholar 

  28. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  29. Xie, J., Zhan, X., Liu, Z., Ong, Y.S., Loy, C.C.: Delving into inter-image invariance for unsupervised visual representations (2020). arXiv preprint: arXiv:2008.11702

  30. Xie, X., et al.: Instance-aware self-supervised learning for nuclei segmentation. In: Martel, A.L. et al. (eds.) Medical Image Computing and Computer Assisted Intervention–MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, 12265, 341–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_33

  31. Xie, Z., Lin, Y., Zhang, Z., Cao, Y., Lin, S., Hu, H.: Propagate yourself: exploring pixel-level consistency for unsupervised visual representation learning (2020). arXiv preprint: arXiv:2011.10043

  32. Yuan, Y., et al.: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4(157), 157ra143 (2012)

    Google Scholar 

  33. Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of visual embeddings. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6002–6012 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102), 111 project (BP0719010), Shanghai Science and Technology Committee (18DZ2270700) and Shanghai Jiao Tong University Science and Technology Innovation Special Fund (ZH2018ZDA17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 99 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Lin, T., Xu, Y. (2021). SSLP: Spatial Guided Self-supervised Learning on Pathological Images. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics