Skip to main content

Learning Consistency- and Discrepancy-Context for 2D Organ Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

Abstract

Recently, CNN-based methods lead tremendous progress in segmenting abdominal organs (e.g., kidney, liver, and pancreas) and anomaly tumors in CT scans. Although 3D CNN-based methods can significantly improve accuracy by using 3D volume as input, they need more computational cost and may not satisfy the efficiency requirement for many practical applications. In this study, we mainly aim at improving the 2D segmentation by leveraging the consistency- and- discrepancy- context information from adjacent slices. Specifically, the consistency context mainly considers that the prediction variance of two adjacent slices needs to follow the variance in the ground truth. The discrepancy-context assumes the label difference of adjacent slices usually occurs in the edge area of organs. To fully utilize the above context information, we further devise a two-stage 2.5D segmentation framework based on the U-Net that takes three adjacent slices as input. In the first stage, we encourage the predictions of the three slices following the consistency context. In the second stage, we refine the segmentation result by adopting the prediction discrepancy area of adjacent slices as an extra input. Experimental results on several challenging datasets demonstrate the effectiveness of our proposed methods. Moreover, the adjacent-slice context information considered in this study can be effortlessly incorporated into other segmentation frameworks without extra testing overhead.

L. Li and S. Lian—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). arXiv (2019)

    Google Scholar 

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv (2017)

    Google Scholar 

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. da Cruz, L.B., et al.: Kidney segmentation from computed tomography images using deep neural network. Comput. Biol. Med. 123, 103906 (2020)

    Google Scholar 

  5. Dou, Q., Chen, H., Jin, Y., Yu, L., Qin, J., Heng, P.-A.: 3D deeply supervised network for automatic liver segmentation from CT volumes. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 149–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_18

    Chapter  Google Scholar 

  6. Haghighi, M., Warfield, S.K., Kurugol, S.: Automatic renal segmentation in DCE-MRI using convolutional neural networks. In: ISBI (2018)

    Google Scholar 

  7. Han, X.: Automatic liver lesion segmentation using a deep convolutional neural network method. arXiv (2017)

    Google Scholar 

  8. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med. Image Anal. 67, 101821 (2021)

    Article  Google Scholar 

  9. Heller, N., et al.: The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv (2019)

    Google Scholar 

  10. Hou, X., et al.: A triple-stage self-guided network for kidney tumor segmentation. In: ISBI (2020)

    Google Scholar 

  11. Howe, R.D., Matsuoka, Y.: Robotics for surgery. Annu. Rev. Biomed. Eng. 1, 211–240 (1999)

    Article  Google Scholar 

  12. Khalifa, F., et al.: 3D kidney segmentation from CT images using a level set approach guided by a novel stochastic speed function. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 587–594. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_72

    Chapter  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)

    Google Scholar 

  14. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  15. Pekar, V., McNutt, T.R., Kaus, M.R.: Automated model-based organ delineation for radiotherapy planning in prostatic region. IJROBP 60, 973–980 (2004)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  18. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv (2019)

    Google Scholar 

  19. Thong, W., Kadoury, S., Piché, N., Pal, C.J.: Convolutional networks for kidney segmentation in contrast-enhanced CT scans. Comput. Meth. Biomech. Biomed. Eng. Imaging Vis. 6, 277–282 (2018)

    Article  Google Scholar 

  20. Van Ginneken, B., Schaefer-Prokop, C.M., Prokop, M.: Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology 261, 719–732 (2011)

    Article  Google Scholar 

  21. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)

    Google Scholar 

  22. Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: Descoteaux, M., et al. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 507–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_58

    Chapter  Google Scholar 

  23. Yu, Z., Pang, S., Du, A., Orgun, M.A., Wang, Y., Lin, H.: Fine-grained tumor segmentation on computed tomography slices by leveraging bottom-up and top-down strategies. In: Medical Imaging 2020: Image Processing (2020)

    Google Scholar 

  24. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (No. 61876159, 61806172, 62076116 & U1705286), the China Postdoctoral Science Foundation Grant (No. 2019M652257), the Guiding Project of Science and Technology Department of Fujian Province (No. 2019Y0018), and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Luo or Shaozi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Lian, S., Luo, Z., Li, S., Wang, B., Li, S. (2021). Learning Consistency- and Discrepancy-Context for 2D Organ Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics